
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

ON ALGORITHMS FOR NONLINEAR MINIMAX
AND MIN-MAX-MIN PROBLEMS AND THEIR

EFFICIENCY

by

Pee Eng Yau

March 2011

Dissertation Supervisor: Johannes O. Royset

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden,

to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204,

Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT(maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

20. LIMITATION
OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

March 2011 Dissertation

On Algorithms for Nonlinear Minimax and
Min-Max-Min Problems and Their Efficiency

Pee Eng Yau

Naval Postgraduate School
Monterey CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number N.A.

Approved for public release; distribution is unlimited

This dissertation approaches the solution of optimization models with uncertain parameters by considering the
worst-case value of the uncertain parameters during optimization. We consider three problems resulting from
this approach: a finite minimax problem (FMX), a semi-infinite minimax problem (SMX), and a semi-infinite
min-max-min problem (MXM). In all problems, we consider nonlinear functions with continuous variables. We
find that smoothing algorithms for (FMX) may only have sublinear rates of convergence, but their complexity in
the number of functions is competitive with other algorithms. We present two new smoothing algorithms with
novel precision-adjustment schemes for (FMX). For (SMX) algorithms, we present a novel way of expressing
rate of convergence in terms of computational work instead of the typical number of iterations, and show how
the new way allows for a fairer comparison of different algorithms. We propose a new approach to solve (MXM),
based on discretization and reformulation of (MXM) as a constrained finite minimax problem. Our approach is
the first to solve (MXM) in the general case where the innermost feasible region depends on the variables in the
outer problems. We conduct numerical studies for all three problems.

Finite and semi-infinite minimax, Generalized min-max-min, Discretization,
Rate of convergence, Complexity

172

Unclassified Unclassified Unclassified UU

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

ON ALGORITHMS FOR NONLINEAR MINIMAX AND
MIN-MAX-MIN PROBLEMS AND THEIR EFFICIENCY

Pee Eng Yau
Principal Analyst, Singapore Defence Science and Technology Agency

B.Eng., National University of Singapore, 1996
M.S., Naval Postgraduate School, 2002

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH

from the
NAVAL POSTGRADUATE SCHOOL

March 2011

Author:

Pee Eng Yau

Approved by:

Johannes O. Royset
Assistant Professor of
Operations Research
Dissertation Supervisor

Gerald G. Brown
Distinguished Professor
of Operations Research

R. Kevin Wood
Distinguished Professor
of Operations Research

W. Matthew Carlyle
Associate Professor of
Operations Research

Craig W. Rasmussen
Associate Professor of
Applied Mathematics

Approved by:

Robert F. Dell, Chairman, Department of Operations Research

Approved by:

Douglas Moses, Associate Provost for Academic Affairs

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This dissertation approaches the solution of optimization models with uncertain pa-

rameters by considering the worst-case value of the uncertain parameters during opti-

mization. We consider three problems resulting from this approach: a finite minimax

problem (FMX), a semi-infinite minimax problem (SMX), and a semi-infinite min-

max-min problem (MXM). In all problems, we consider nonlinear functions with

continuous variables. We find that smoothing algorithms for (FMX) may only have

sublinear rates of convergence, but their complexity in the number of functions is

competitive with other algorithms. We present two new smoothing algorithms with

novel precision-adjustment schemes for (FMX). For (SMX) algorithms, we present a

novel way of expressing rate of convergence in terms of computational work instead

of the typical number of iterations, and show how the new way allows for a fairer

comparison of different algorithms. We propose a new approach to solve (MXM),

based on discretization and reformulation of (MXM) as a constrained finite minimax

problem. Our approach is the first to solve (MXM) in the general case where the in-

nermost feasible region depends on the variables in the outer problems. We conduct

numerical studies for all three problems.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION . 1

A. MOTIVATION AND BACKGROUND 1

B. SCOPE OF DISSERTATION 2

C. CONTRIBUTIONS . 4

D. MATHEMATICAL BACKGROUND 5

1. Continuity of Max Functions 5

2. Rate of Convergence . 6

3. Consistent Approximations 7

E. ORGANIZATION . 10

II. FINITE MINIMAX PROBLEM 11

A. INTRODUCTION . 11

B. EXPONENTIAL SMOOTHING 15

C. RATE OF CONVERGENCE AND COMPLEXITY 17

1. Ill-Conditioning of Smoothed Problem 19

2. Complexity . 22

3. Optimal Parameter Choice 25

4. Rate of Convergence . 27

D. SMOOTHING ALGORITHMS AND ADAPTIVE PRECISION

ADJUSTMENT . 31

1. Smoothing Algorithm Based on Optimality Function . . 32

2. Smoothing Algorithm Using Cost Descent 36

3. Complexity . 45

E. NUMERICAL RESULTS . 46

1. Selection of a Robust ϵ for Active-Set Algorithms 48

2. Comparison . 51

F. CONCLUSIONS FOR FINITE MINIMAX 57

vii

III. SEMI-INFINITE MINIMAX PROBLEM 59

A. INTRODUCTION . 59

B. EFFICIENCY OF DISCRETIZATION ALGORITHM 63

1. Discretization . 63

2. Ideal Algorithm Map . 68

3. Adaptive Discretization Algorithm 69

4. Quadratically Convergent Algorithm Map 71

5. Linearly Convergent Algorithm Map 74

6. Sublinearly Convergent Algorithm Map 77

7. Smoothing Algorithm Map 80

C. EFFICIENCY OF ϵ-SUBGRADIENT METHOD 86

D. NUMERICAL RESULTS . 98

1. Problem Instance of Uncertainty Dimension One 100

2. Problem Instance of Uncertainty Dimension Two 102

3. Problem Instance of Uncertainty Dimension Three 102

E. CONCLUSIONS FOR SEMI-INFINITE MINIMAX 105

IV. SEMI-INFINITE MIN-MAX-MIN PROBLEM 107

A. INTRODUCTION . 107

B. DEFENDER-ATTACKER-DEFENDER EXAMPLE 110

C. APPROACH TO SOLVE THE MIN-MAX-MIN PROBLEM . . 114

1. Constructing a Finite Minimax Problem 114

2. Algorithm for Semi-Infinite Min-Max-Min 120

D. NUMERICAL RESULTS . 121

E. CONCLUSIONS FOR SEMI-INFINITE MIN-MAX-MIN 123

V. CONCLUSIONS AND FUTURE RESEARCH 125

A. CONCLUSIONS . 125

B. FUTURE RESEARCH . 127

APPENDIX A. FINITE MINIMAX PROBLEMS 129

viii

APPENDIX B. FINITE MINIMAX ALGORITHM DETAILS AND

PARAMETERS . 133

APPENDIX C. SEMI-INFINITE MINIMAX PROBLEMS 135

APPENDIX D. SEMI-INFINITEMINIMAXALGORITHMDETAILS

AND PARAMETERS . 139

APPENDIX E. SEMI-INFINITE MIN-MAX-MIN PROBLEM PA-

RAMETERS AND RESULTS . 141

LIST OF REFERENCES . 145

INITIAL DISTRIBUTION LIST . 151

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

LIST OF FIGURES

1. Smoothed Problems. 16
2. Optimal Supply and Flow Solution for (SMXM). 122
3. Optimal Supply and Flow Solution for (GMXM). 124

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

LIST OF TABLES

1. Run times based on ϵ for ϵ-PPP. The word “local” means that the
algorithm converges to a locally optimal solution that does not satisfy
(II.92), which may occur for non-convex problems. 49

2. Run times based on ϵ for SQP-2QP. 49
3. Run times based on ϵ for SMQN and Algorithm II.2. 50
4. Run times based on ϵ for Algorithm II.3. The word “local” means

that the algorithm converges to a locally optimal solution that does
not satisfy (II.92), which may occur for non-convex problems. 51

5. Run times (in seconds) for various algorithms. The word “local” means
that the algorithm converges to a locally optimal solution that does not
satisfy (II.92), which may occur for non-convex problems. An asterisk *
indicates that the algorithm does not satisfy (II.92) after six hours, and
ψ(x)−ψtarget > 10−4 at termination, while ** indicates ψ(x)−ψtarget >
10−3 at termination. 53

6. Similar results as in Table 5, but with larger q. The word “local”
means that the algorithm converges to a locally optimal solution that
does not satisfy (II.92), which may occur for non-convex problems. An
asterisk * indicates that the algorithm does not satisfy (II.92) after six
hours, and ψ(x) − ψtarget > 10−4 at termination, while ** indicates
ψ(x)− ψtarget > 0.01 at termination. 55

7. Run times (in seconds) of algorithms on problem instance ProbN. “SD”
and “QN” indicate that Algorithm II.3 uses BpΩ(·) given by (II.47) and
(II.48), respectively. The word “mem” indicates that the algorithm
terminates due to insufficient memory. 56

8. Run times (in seconds) for SProbA using Algorithm III.1 with ϵ-PPP.
The numbers in parentheses indicate the number of iterations. An
asterisk * indicates that the particular discretization parameter is in-
sufficient to achieve the desired error tolerance, while a double asterisk
** indicates that (III.147) is not satisfied after six hours. The word
“mem” means that the algorithm terminates due to insufficient memory. 101

9. Run times (in seconds) for SProbA using Algorithm III.1 with SQP-
2QP. The numbers in parentheses indicate the number of iterations.
An asterisk * indicates that the particular discretization parameter is
insufficient to achieve the desired error tolerance. The word “mem”
means that the algorithm terminates due to insufficient memory. 102

10. Run times (in seconds) for SProbA using Algorithm III.3. The numbers
in parentheses indicate the number of iterations. 102

xiii

11. Run times (in seconds) for SProbB using Algorithm III.1 with ϵ-PPP.
The numbers in parentheses indicate the number of iterations. An
asterisk * indicates that the particular discretization parameter is in-
sufficient to achieve the desired error tolerance, while a double asterisk
** indicates that (III.147) is not satisfied after six hours. 103

12. Run times (in seconds) for SProbB using Algorithm III.1 with SQP-
2QP. The numbers in parentheses indicate the number of iterations.
An asterisk * indicates that the particular discretization parameter is
insufficient to achieve the desired error tolerance. 103

13. Run times (in seconds) for SProbB using Algorithm III.3. The numbers
in parentheses indicate the number of iterations. 103

14. Run times (in seconds) for SProbC using Algorithm III.1 with ϵ-PPP.
The numbers in parentheses indicate the number of iterations. An
asterisk * indicates that the particular discretization parameter is in-
sufficient to achieve the desired error tolerance, while a double asterisk
** indicates that (III.147) is not satisfied after six hours. 104

15. Run times (in seconds) for SProbC using Algorithm III.1 with SQP-
2QP. The numbers in parentheses indicate the number of iterations.
An asterisk * indicates that the particular discretization parameter is
insufficient to achieve the desired error tolerance, while a double asterisk
** indicates that (III.147) is not satisfied after six hours. 105

16. Run times (in seconds) for SProbC using Algorithm III.3. The numbers
in parentheses indicate the number of iterations. 105

17. Finite minimax problem instances. An asterisk * indicates that the
problem instance are created by the authors. 131

18. Semi-infinite minimax problem instances. The starting value y0 is only
relevant for the ϵ-subgradient algorithm, Algorithm III.3. 137

19. Random generators used to produce the DAD problem parameters in
Table 20. The phrase 5×U(2,4), 5×U(10,13) represents that a total
of ten random numbers are generated, the first five are uniformly dis-
tributed between two and four, and the last five numbers are uniformly
distributed between ten and 13. 141

20. Defender-Attacker-Defender Network Data. 143
21. Results for (SMXM). 143
22. Results for (GMXM). 143

xiv

ACKNOWLEDGMENTS

I thank my advisor, Dr. Johannes Royset, for his invaluable advice and con-

stant guidance throughout this arduous but fruitful journey. I am grateful to my

other committee members, Dr. Gerald Brown, Dr. Kevin Wood, Dr. Matt Carlyle,

and Dr. Craig Rasmussen, for the knowledge that they have imparted me in their

classes, and also for their careful and detailed review of the dissertation.

My office-mates, Hiro Sato, Ali Al-Rowaei, Dave Ruth, Jay Foraker, Anthony

Tvaryanas, Mumtaz Karatas, and Helcio Vieira Junior, have made this journey much

easier and more enjoyable. I will miss the late nights studying in the office with

Hiro, making coffee with Dave in the morning, and chatting with Jay on issues from

consistent approximations to iPads.

I am grateful to my bosses at the Defence Science and Technology Agency for

giving me this wonderful opportunity to pursue my PhD at NPS. Special mention to

my ex-boss, Mr. Koh Wee Liam, who supported my PhD scholarship application and

made all this possible.

I want to thank my mum, Poa Choo, and my sisters, Suat Hoon, Suat Keng,

and Suat Hong, for their care and support. Touring the U.S. with them during their

visits has been a real highlight for my stay here.

I want to thank my wife, Puay Joo, for taking good care of our kids, Verdell

and Jerrall, so that I can concentrate all my efforts on my research, for her constant

encouragement, for her understanding when we have to remain in Monterey during

quarterly breaks because of my research work, and for her superb soups. To Verdell

and Jerrall, now that this dissertation is complete, I can finally stay home after dinner

to play Wii with you. LET’S GO Mario and Yellow Mushroom...

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

EXECUTIVE SUMMARY

Optimization problems with uncertain parameters arise in numerous applications.

One possible approach to handle such problems is to consider the worst-case value of

the uncertain parameter during optimization. We consider three problems resulting

from this approach: a finite minimax problem (FMX), a semi-infinite minimax prob-

lem (SMX), and a semi-infinite min-max-min problem (MXM). In all problems, we

consider nonlinear functions with continuous variables. We develop rate of conver-

gence and complexity results, and propose algorithms for solving these optimization

problems.

In (FMX), we solve a minimax problem with a finite number of variables and

functions. We develop rate of convergence and complexity results of smoothing algo-

rithms for solving (FMX) with many functions. We find that smoothing algorithms

may only have sublinear rates of convergence, but their complexity in the number

of functions is competitive with other algorithms due to small computational work

per iteration. We present two smoothing algorithms with novel precision-adjustment

schemes and carry out a comprehensive numerical comparison with other algorithms

from the literature. We find that the proposed algorithms are competitive with SQP

algorithms, and especially efficient for problem instances with many variables, or

where a significant number of functions are nearly active at stationary points.

The numerical results also indicate that smoothing with first-order gradient

methods is likely the only viable approach to solve (FMX) with a large number of

functions and variables due to memory issues.

For (SMX), we solve a minimax problem with a finite number of variables,

but an infinite number of functions. We develop and compare the rate of conver-

gence results for various fixed and adaptive discretization algorithms, as well as an

ϵ-subgradient algorithm. We present a novel way of expressing rate of convergence, in

terms of computational work instead of the typical number of iterations. Hence, we

xvii

are able to identify algorithms that are competitive due to low computational work per

iteration even if they require many iterations. We show that a fixed discretization al-

gorithm with a quadratically or linearly convergent algorithm map for the discretized

problem can achieve the same asymptotic convergence rate attained by an adaptive

discretization algorithm. We show that under certain convexity assumptions, the rates

of convergence for discretization algorithms depend on the dimension of the uncertain

parameters, while the rates of convergence for ϵ-subgradient algorithms are indepen-

dent of the dimension of the uncertain parameters under certain convexity-concavity

assumptions. This indicates that under convexity-concavity assumptions, discretiza-

tion algorithms are not competitive with ϵ-subgradient algorithms for problems with

large dimensions of the uncertain parameters, and that conclusion is validated by our

numerical results.

In (MXM), the variables in each layer of the problem vary within compact

continuous sets. We consider two cases depending whether the inner feasible region

is a constant set, which we denote by (SMXM), or depends on decision variables

of the outer min-max problem, which we call the generalized semi-infinite min-max-

min problem, and denote by (GMXM). We propose a new approach to solve (MXM),

based on discretization and reformulation of (MXM) into a constrained finite minimax

problem with a larger dimensionality than the original (MXM). Our approach is

the first to solve (GMXM) in the literature and it also solves (SMXM). We apply

our approach on a defender-attacker-defender network interdiction problem, which

demonstrates the viability of the approach.

xviii

I. INTRODUCTION

A. MOTIVATION AND BACKGROUND

Most, if not all, decisions in the real world are made under some uncertainty,

for example, Apple needs to decide on the plant capacity for manufacturing the iPad

before knowing the demands for it, the Department of Homeland Security needs to

make investment and operational decisions not knowing where and how the next ter-

rorist attack will occur, and almost everyone invests in stocks and bonds not knowing

if they will turn out to be profitable.

In optimization models, uncertainty usually shows up as uncertain parameters

in the model formulation. A common approach taken to handle the uncertainty is to

use the average value of the parameter, or to use its most-likely value, and then use

deterministic optimization to find an optimal solution. There are many examples that

show that optimal solutions based on such point estimates of uncertain parameters

are not robust, i.e., small changes to the parameters cause the previously optimal

solution to have a much worse outcome.

The importance of considering uncertainty in optimization can be seen by the

number of techniques developed for it (Sahinidis, 2004; Rockafellar, 2007), among

which are the tools of stochastic programming (Shapiro, Dentcheva, & Ruszczyński,

2009) and stochastic dynamic programming (Powell, 2007). The main challenge with

the technique is the availability or even the existence of the probability distribution

for certain parameters.

An example where no probability distribution exists is that of an adversar-

ial situation, where an adversary wants to maximize damage to you, or minimize

your ability to achieve certain objectives. In such problems it is reasonable to use a

minimax formulation, to minimize the worst-case damage that can be caused by the

adversary. Optimizing our actions against the worst-case scenario is the topic of this

dissertation.

1

B. SCOPE OF DISSERTATION

In this dissertation, we consider three problems of increasing difficulty: an

unconstrained finite minimax problem (FMX), an unconstrained semi-infinite mini-

max problem (SMX), and a constrained semi-infinite min-max-min problem (MXM).

Specifically, we develop rate of convergence and complexity results, as well as algo-

rithms for solving these problems. In all problems, we consider nonlinear functions

with continuous variables.

In (FMX), we solve a minimax problem with a finite number of variables and

functions. There are several approaches to solve (FMX). We consider one such ap-

proach, that of smoothing algorithms. In smoothing algorithms (see for example

Polak, Royset, & Womersley, 2003; Polak, Womersley, & Yin, 2008; Ye, Liu, Zhou, &

Liu, 2008; Li, 1992; Xu, 2001), we create a smooth function that approximates the non-

differentiable pointwise maximum function and minimize the smooth approximating

function. As noted in Polak et al. (2003), the key strength of smoothing algorithms

is that they convert minimax problems into simple, smooth, and unconstrained opti-

mization problems that can be solved using any standard unconstrained optimization

algorithms. While complexity and rate of convergence have been studied extensively

for nonlinear programs and minimax problems (see for example Nemirovski & Yudin,

1983; Drezner, 1987; Wiest & Polak, 1991; Nesterov, 1995; Ariyawansa & Jiang, 2000;

Nesterov & Vial, 2004; Nesterov, 2004), the topics have been largely overlooked in the

specific context of smoothing algorithms for (FMX). We discuss complexity and rate

of convergence for smoothing algorithms for (FMX), and propose two new smooth-

ing algorithms to solve (FMX). We consider problem instances of (FMX) with up to

10,000,000 functions and up to 10,000 variables in the numerical studies to compare

the new smoothing algorithms with other algorithms from the literature.

For (SMX), we solve a minimax problem with a finite number of variables,

but an infinite number of functions. The focus of our research for (SMX) is on a

novel way of expressing rate of convergence of algorithms. Consider two (SMX) al-

2

gorithms, a linearly convergent algorithm and a superlinearly convergent algorithm.

Since conventional rate of convergence do not consider computational work, it is pos-

sible for the linearly convergent algorithm to generate an iterate every second, while

the superlinearly convergent algorithm to generate an iterate every hour. Or worse

still, the superlinearly convergent algorithm takes an hour to generate the first it-

erate, and the run time to generate subsequent iterates doubles at every iteration.

As mentioned, this lack of correlation between rate of convergence and run time is

because conventional rate of convergence do not consider computational work. We

propose a new way of expressing rate of convergence, which considers computational

work. We select several (SMX) algorithms to illustrate how the new way of express-

ing rate of convergence addresses the issues of the conventional way described above.

Specifically, we examine discretization and ϵ-subgradient algorithms. Discretization

algorithms are one of the more popular classes of algorithms for solving SIPs due to

their simplicity. In discretization algorithms, we solve a sequence of finite minimax

problems, where the number of functions considered increases. Since the computa-

tional work to solve a finite minimax problem depends on the number of functions

in the problem, a discretization algorithm takes increasingly longer time to gener-

ate an iterate as the discretization algorithm progresses. An ϵ-subgradient algorithm

does not use discretization to solve (SMX) and is well-known to have a sublinear rate

of convergence. Its run time does not vary much between iterations. Compared to

the conventional way of expressing rate of convergence, we show that the new way

allows us to conduct a fairer comparison between the ϵ-subgradient algorithm and

discretization algorithms. We also conduct numerical studies to validate the rate-of-

convergence results that we obtain.

In (MXM), the variables in each layer of the problem vary within a compact

set with uncountable cardinality. We consider two cases depending whether the inner

feasible region is a constant set, which we denote by (SMXM), or depends on decision

variables of the outer min-max problem, which we call the generalized semi-infinite

3

min-max-min problem, and denote by (GMXM). The problem (MXM) is difficult

to solve, which explains the rather limited literature on (SMXM), and so far, there

is no solution approach for (GMXM). We propose a new approach to solve (MXM),

based on discretization and reformulation of (MXM) into a constrained finite minimax

problem. We apply the approach on a defender-attacker-defender network interdiction

problem for a 10-node 18-arc network to demonstrate the viability of the approach.

C. CONTRIBUTIONS

The main contributions of this dissertation are as follows. We provide the

first complexity and rate-of-convergence analyses of smoothing algorithms for solving

(FMX). We develop two new smoothing algorithms with novel precision-adjustment

schemes. We conduct a comprehensive numerical comparison of our algorithms with

other algorithms from the literature, considering problem instances with the number

of functions two orders of magnitude larger than problem instances considered in the

literature. The numerical results indicate that the two new smoothing algorithms are

competitive with the other algorithms compared.

For (SMX), we present a novel way of expressing rate of convergence, in terms

of computational work instead of the typical number of iterations, which allows for a

fairer comparison of algorithms. We show that a fixed discretization algorithm with

quadratically or linearly convergent algorithm map can achieve the same asymptotic

convergence rate in terms of computational work as the one attained by an adaptive

discretization algorithm. We show that under certain convexity-concavity assump-

tions, discretization algorithms are not competitive with ϵ-subgradient algorithms for

problems with large dimension of the uncertain parameters, which we also validated

in numerical tests.

4

We develop the first exact algorithm for (GMXM), which also results in a

novel approach for solving (SMXM). If (MXM) has an objective function that is

convex in the inner and outer minimization variables, and the inner and outer feasible

regions are convex, then our algorithm guarantees convergence to a global minimizer

of (MXM).

D. MATHEMATICAL BACKGROUND

This section defines notation and mathematical concepts used throughout this

dissertation. Throughout the dissertation, Rn denotes the n-dimensional Euclidean

space, N △
= {1, 2, ...}, N0

△
= N ∪ {0}, | · | represents the cardinality operator, ∥ · ∥

represents the Euclidean norm operator, AT denotes the transpose of the matrix A,

and xi →K x represents that given a K ⊂ N, for every ϵ > 0, there exists an i1 ∈ K

such that |xi − x| ≤ ϵ for all i ≥ i1, i ∈ K. Other than the above notation, which is

used to denote the same quantities throughout this dissertation, some notation may

be used to represent different quantities in different chapters.

1. Continuity of Max Functions

The following results on the continuity of the pointwise maximum (applies to

minimum as well) function are used repeatedly throughout the dissertation.

Proposition I.1. Suppose that the functions f j : Rd → R, j ∈ Q
△
= {1, 2, ..., q}, q ∈

N, are continuous for all x ∈ Rd, d ∈ N. Then the pointwise maximum function

ψ : Rd → R defined by

ψ(x)
△
= max

j∈Q
f j(x) (I.1)

is continuous for all x ∈ Rd.

Proposition I.2. Let Y ⊂ Rm be a compact set, and the functions ϕ(·, y), where

ϕ : Rd × Rm → R, be continuous for all y ∈ Y on Rd, Then the pointwise maximum

function ψ : Rd × Rm → R defined by

ψ(x)
△
= max

y∈Y
ϕ(x, y) (I.2)

5

is continuous for all x ∈ Rd.

The proofs for Propositions I.1 and I.2 can be found on pp. 51 and 187 of

Demyanov and Malozamov (1974), repectively.

2. Rate of Convergence

Two key performance measures of an optimization algorithm are its complexity

and rate of convergence. We define the different rates of convergence next, based on

Bertsekas (1999, pp. 63-65) and Nocedal and Wright (2006, pp. 619-620).

Consider a sequence of points {xn}∞n=0 ⊂ Rd converging to x∗ ∈ Rd. Rate of

convergence can be evaluated using an error function en : Rd → R, where en ≥ 0 for

all n ∈ N0 and en → 0 as n → ∞. The two common-used error functions are based

on Euclidean distance

en = ∥xn − x∗∥, (I.3)

and function values

en = |f(xn)− f(x∗)|. (I.4)

We say that the convergence is sublinear if

lim sup
n→∞

en+1

en
= 1. (I.5)

The convergence is linear if there exist c ∈ (0, 1) and n1 ∈ N0 such that

en+1

en
≤ c, (I.6)

for all n ≥ n1. Convergence is superlinear if

lim sup
n→∞

en+1

en
= 0. (I.7)

We say that we have order of convergence r > 1 if there exist a c > 0 and a n1 ∈ N0

such that
en+1

(en)r
≤ c, (I.8)

for all n ≥ n1. When r = 2, we call the convergence quadratic.

6

If two sequences converge sublinearly, we say that they have the same rate,

even if the constants are different. Similar comments hold for linear and superlinear

convergence. We say that two sequences that are both superlinear converge at the

same rate. We say that two sequences that are both superlinear but with different

orders converge at the same rate but with different orders. We also say that superlin-

ear convergence is faster than linear convergence, which again is faster than sublinear

convergence.

We say that an algorithm map used to solve a problem (P) converges sub-

linearly, linearly, or superlinearly if the sequence generated by the algorithm map

converges sublinearly, linearly, or superlinearly, respectively.

3. Consistent Approximations

This subsection discusses the theory of consistent approximations (Polak, 2003,

1997). Consider the problem

(P) min
x∈X

f(x), (I.9)

where X ⊂ Rd and f : Rd → R is continuous.

Next, given N ∈ N, consider an approximate problem to (P)

(PN) min
x∈XN

fN(x), (I.10)

where XN ⊂ Rd and fN : Rd → R is continuous.

Two properties are required for the approximating problems (as N → ∞) to

be consistent approximations to (P). First, we need the epi-convergence of (PN) to

(P) as N → ∞. For a detailed discussion of epi-convergence; see Polak (1997, Section

3.3.1) or Rockafellar and Wets (1998, Sections 1B, 4B, & 7B). We here give essential

definitions and results for our study.

We define the epigraph

E
△
=
{
(x, z) ∈ Rd+1 | x ∈ X, z ≥ f(x)

}
. (I.11)

7

The set E consists of all the points in Rd+1 on or above the function f(·). Similarly,

the epigraph

EN
△
=
{
(x, z) ∈ Rd+1 | x ∈ XN , z ≥ fN(x)

}
. (I.12)

Epi-convergence of (PN) to (P) as N → ∞ is then defined as set convergence of the

epigraphs EN to E, in the sense of Painlevé-Kuratowski, as in Definition 5.3.6 of

Polak (1997). For completeness, we restate the definition of set convergence in the

sense of Painlevé-Kuratowski.

Definition I.1. Consider a sequence of sets {Ai}∞i=0 ⊂ Rd.

(i) We define the distance between a point x̂ and a set Ai as

ρ(x̂, Ai)
△
= inf {∥x− x̂∥ | x ∈ Ai} . (I.13)

The point x̂ is a limit point of {Ai}∞i=0 if ρ(x̂, Ai) → 0 as i→ ∞ (that is, x̂ is a
limit point of {Ai}∞i=0 if there exist a xi ∈ Ai for all i ∈ N, such that xi → x̂, as
i→ ∞).

(ii) The point x̂ is a cluster point of {Ai}∞i=0 if it is a limit point of a subsequence
of {Ai}∞i=0.

(iii) We denote the set of limit points of {Ai}∞i=0 by lim inf Ai, and we denote the set
of cluster points of {Ai}∞i=0 by lim supAi.

(iv) The sets Ai converge in the sense of Painlevé-Kuratowski to the set A as i→ ∞
if lim inf Ai = lim supAi = A.

An alternate way to prove epi-convergence is provided by the following propo-

sition, extracted from Polak (2003, Theorem 3.1).

Proposition I.3. The sequence of problems {(PN)}N∈N epi-converges to (P) as N →

∞ if and only if

(i) for every x ∈ X, there exists a sequence {xN}N∈N, where xN ∈ XN , xN → x as
N → ∞, and lim sup fN(xN) ≤ f(x);

(ii) for every infinite sequence {xN}N∈K, where K ⊂ N, xN ∈ XN for all N ∈ K,
and xN →K x as N → ∞, then x ∈ X and lim inf fN(xN) ≥ f(x).

8

The importance of epi-convergence is stated in the next result, extracted from

Polak (2003, Theorem 3.2).

Proposition I.4. Suppose that the sequence of problems {(PN)}N∈N epi-converges to

(P) as N → ∞. Then the following facts hold:

(i) If {x̂N} is a sequence of global minimizers of (PN) and there exists an infinite
subset K ∈ N such that x̂N →K x̂ as N → ∞, then x̂ is a global minimizer of
(P), and fN(x̂N) →K f(x̂) as N → ∞.

(ii) If {x̂N} is a sequence of local minimizers of (PN) sharing a common radius of
attraction ρ > 0 (i.e., for all N ∈ N, fN(x̂N) ≤ fN(x) for all x ∈ XN such that
∥x− x̂N∥ ≤ ρ), and there exists an infinite subset K ∈ N such that x̂N →K x̂ as
N → ∞, then x̂ is a local minimizer of (P), and fN(x̂N) →K f(x̂) as N → ∞.

Epi-convergence does not rule out the possibility that an arbitrary sequence

of local minimizers of (PN) may have an accumulation point that is neither a local

minimizer nor a stationary point. To ensure that accumulation points of a sequence

of stationary points of (PN) are stationary points of (P), a suitable characterization of

stationarity is required, such as the use of optimality functions as defined by Definition

3.3 of Polak (2003).

Definition I.2. A function θ : Rd → R is an optimality function for (P) if (i) θ(·) is

upper semi-continuous, (ii) θ(x) ≤ 0 for all x ∈ Rd, and (iii) if x̂ is a local minimizer

of (P), then θ(x̂) = 0. Similarly, a function θN : Rd → R is an optimality function for

(PN) if (i) θN(·) is upper semi-continuous, (ii) θN(x) ≤ 0 for all x ∈ Rd, and (iii) if

x̂N is a local minimizer of (PN), then θN(x̂N) = 0.

We next define consistent approximations, as per Definition 3.4 of Polak

(2003).

Definition I.3. The pairs ((PN), θN(·)), in the sequence {((PN), θN(·))} are con-

sistent approximations to the pair ((P), θ(·)) if (i) (PN) epi-converges to (P) as

N → ∞ and (ii) for any infinite sequence {xN}N∈K , K ⊂ N where xN → x,

lim sup θN(xN) ≤ θ(x).

9

Consistent approximations ensure that given a sequence of approximate sta-

tionary points {xN}, where θN(xN) → 0 as N → ∞, and xN → x̂ as N → ∞, then

θ(x̂) = 0, i.e., x̂ is a stationary point of (P).

E. ORGANIZATION

The remainder of this dissertation is outlined as follows. Chapter II devel-

ops results for rate of convergence and complexity for smoothing algorithms to solve

(FMX). We present two new smoothing algorithms with novel precision-adjustment

schemes and carry out a comprehensive numerical comparison with other algorithms

from the literature. In Chapter III, we present a novel way of expressing rate of con-

vergence, in terms of computational work instead of the typical number of iterations.

We develop and compare rate-of-convergence results for various fixed and adaptive

discretization algorithms as well as an ϵ-subgradient algorithm. In Chapter IV, we

propose a new approach to solve (MXM). We apply the approach to solve a defender-

attacker-defender network interdiction problem to illustrate the viability of our new

approach. Chapter V covers the conclusions and future research opportunities.

10

II. FINITE MINIMAX PROBLEM

A. INTRODUCTION

This chapter considers finite minimax problems of the form

(FMX) min
x∈Rd

ψ(x), (II.1)

where ψ : Rd → R is defined by

ψ(x)
△
= max

j∈Q
f j(x), (II.2)

and f j : Rd → R, j ∈ Q
△
= {1, 2, ..., q}, q ∈ N, are twice continuously differentiable.

(FMX) is “finite” as we consider a finite number of functions, as compared to the

“semi-infinite” problems (SMX) and (MXM) where we consider an infinite number

of functions. Finite minimax problems of the form (FMX) may occur in engineering

design (Polak, 1987), control system design (Polak, Salcudean, & Mayne, 1987), port-

folio optimization (Cai, Teo, Yang, & Zhou, 2000), best polynomial approximation

(Demyanov & Malozemov, 1974), or as subproblems in semi-infinite minimax algo-

rithms (Panier & Tits, 1989). We focus on minimax problems with many functions,

i.e., large q, which may result from finely discretized semi-infinite minimax problems

or optimal control problems; see for example Panier and Tits (1989); Zhou and Tits

(1996). We develop algorithms for such problems and analyze their efficiency. An

abbreviated version of this chapter is published separately (Pee & Royset, 2010).

The non-differentiability of the objective function in (FMX) poses the main

challenge for solving minimax problems, as standard unconstrained optimization al-

gorithms do not apply directly. Many algorithms have been proposed to solve (FMX);

see for example Zhou and Tits (1996); Polak et al. (2003); Obasanjo et al. (2010) and

references therein. One approach is sequential quadratic programming (SQP), where

(FMX) is first reformulated into the standard nonlinear constrained problem

(FMX′) min
(x,z)∈Rd+1

{z | f j(x)− z ≤ 0 ∀j ∈ Q} (II.3)

11

and then an SQP algorithm is applied to (FMX′), advantageously exploiting the

special structure in the new formulation (Zhou & Tits, 1996; Zhu, Cai, & Jian, 2009).

Other approaches also based on (FMX′) include interior point methods (Sturm &

Zhang, 1995; Obasanjo et al., 2010; Luksan, Matonoha, & Vlcek, 2005) and conjugate

gradient methods in conjunction with exact penalties and smoothing (Ye et al., 2008).

Due to its aggressive active-set strategy, the SQP algorithm in Zhou and Tits

(1996) appears especially promising for problems with many sequentially-related func-

tions (in the sense that the values taken by f j(·) are typically close to the values taken

by f j+1(·)), as in the case of finely discretized semi-infinite minimax problems. The

SQP algorithm in Zhou and Tits (1996) needs to solve two quadratic programs (QPs)

in each iteration. Recently, Zhu et al. (2009) propose an SQP algorithm that requires

the solution of only one QP per iteration, yet this algorithm retains global conver-

gence and superlinear rate of convergence as in the algorithm in Zhou and Tits (1996).

Furthermore, the algorithm in Zhu et al. (2009) does not use an active-set strategy.

At a point x ∈ Rd, we call a function f j(·), j ∈ Q, active if f j(x) = ψ(x), and ϵ-active

(ϵ > 0) if f j(x) ≥ ψ(x)− ϵ. In general, an active-set strategy only considers functions

that are ϵ-active (and disregards the other functions) at the current iterate, and thus

greatly reduces the number of function and gradient evaluations at each iteration of

an algorithm. While the number of iterations needed to solve a problem to required

precision may increase, the overall effect may be a reduction in the number of func-

tion and gradient evaluations, and that may translate into reduced computing times.

For example, Polak et al. (2008) reports a 75% reduction in the number of gradient

evaluations, and Zhou and Tits (1996) reports reductions in computing times with

active-set strategies.

In smoothing algorithms (see for example Polak et al., 2003, 2008; Ye et al.,

2008; Li, 1992; Xu, 2001), we create a smooth function (using exponential smoothing,

to be discussed in Section II.B) that approximates the non-differentiable ψ(·) and

minimize the smooth approximating function. We refer to the resulting problem

12

of minimizing the smooth approximating function as a smoothed problem. As the

smoothed problem remains unconstrained, one can use any standard unconstrained

optimization algorithm, such as the Armijo Gradient or Newton methods (Polak et al.,

2003) or a Quasi-Newton method (Polak et al., 2008).

A fundamental challenge for smoothing algorithms is that the smoothed prob-

lem becomes increasingly ill-conditioned as the approximation becomes more accu-

rate. Consequently, the use of smoothing techniques is complicated by the need to

balance the accuracy of the approximation with problem ill-conditioning. The sim-

plest smoothing algorithm creates an accurate smooth approximating function and

solve it. This simple static scheme of constructing a single smoothed problem and

solving it is highly sensitive to the choice of accuracy and has poor numerical perfor-

mance (Polak et al., 2003). An attempt to address this challenge by using a sequence

of smoothed problems was first made in Xu (2001), where a precision parameter that

controls approximation accuracy is initially set to a pre-selected value and then dou-

bled at each iteration. Effectively, in this open-loop scheme to precision adjustment,

the algorithm approximately solves a sequence of gradually more accurate approxi-

mations. This open-loop scheme is sensitive to the multiplication factor (Polak et al.,

2003).

Polak et al. (2003) propose an adaptive precision-parameter adjustment scheme

that controls problem ill-conditioning by keeping a smoothing precision parameter

small when far from a stationary solution, and increasing the parameter as a sta-

tionary solution is approached. Numerical results show that the scheme manages

ill-conditioning better than static and open-loop schemes. The smoothing algorithms

in Xu (2001) and Polak et al. (2003) do not incorporate any active-set strategy.

Using the adaptive precision-parameter adjustment scheme in Polak et al.

(2003), Polak et al. (2008) presents an active-set strategy for smoothing algorithms

that tackles (FMX) with large q. We note that the convergence result in Theorem

3.3 of Polak et al. (2008) may be slightly incorrect as it claims stationarity for all

13

accumulation points of a sequence constructed by the algorithm in Polak et al. (2008).

However, the proof for Theorem 3.3 of Polak et al. (2008) relies on Polak et al. (2003),

which guarantees stationarity for only a single accumulation point.

This chapter examines smoothing algorithms for (FMX) with large q from two

angles. First, we discuss complexity and rate of convergence for such algorithms. We

define complexity as the computational work of an algorithm on a serial machine to

obtain a solution that is within a specified error tolerance of the optimal solution

of a problem, expressed as a function of the sizes of a specific set of inputs for the

problem. While complexity and rate of convergence have been studied extensively

for nonlinear programs and minimax problems (see for example Nemirovski & Yudin,

1983; Drezner, 1987; Wiest & Polak, 1991; Nesterov, 1995; Ariyawansa & Jiang, 2000;

Nesterov & Vial, 2004; Nesterov, 2004), the topics have been largely overlooked in the

specific context of smoothing algorithms for (FMX). A challenge here is the increasing

ill-conditioning of the smoothed problem as the smoothing precision improves. We

quantify the degree of ill-conditioning and use this result to analyze complexity and

rate of convergence. We find that the rate of convergence may be sublinear, but

low computational work per iteration yields complexity, as a function of q, that is

competitive with several other algorithms.

Second, we consider implementation and numerical performance of smooth-

ing algorithms. A challenge here is to construct schemes for selecting the precision

parameter that guarantee convergence to stationary points and perform well em-

pirically. As discussed above, static and open-loop precision-parameter adjustment

schemes result in poor numerical performance and, thus, we develop two adaptive

schemes. In extensive tests against other algorithms, smoothing algorithms with the

adaptive schemes are competitive, and especially so for problem with many variables,

or where a significant number of functions are nearly active at stationary points.

14

B. EXPONENTIAL SMOOTHING

For ease of analysis of active-set strategies, we consider the problem

(FMXΩ) min
x∈Rd

ψΩ(x), (II.4)

where ψΩ(x)
△
= maxj∈Ω f

j(x), and Ω ⊆ Q. When Ω = Q, (FMXQ) is identical to

(FMX). For simplicity of notation, we drop subscripts Q in several contexts below.

Next, for any Ω ⊆ Q and for a parameter p > 0, we define a smoothed problem to

(FMXΩ) by

(FMXpΩ) min
x∈Rd

ψpΩ(x), (II.5)

where

ψpΩ(x)
△
=

1

p
log

(∑
j∈Ω

exp
(
pf j(x)

))

= ψΩ(x) +
1

p
log

(∑
j∈Ω

exp
(
p(f j(x)− ψΩ(x))

))
(II.6)

is an exponential penalty function. We denote (FMXpQ) by (FMXp) for brevity.

This smoothing technique was introduced in Kort and Bertsekas (1972) and used in

Polak et al. (2003, 2008); Ye et al. (2008); Li (1992); Xu (2001). The exponential

penalty function has been commonly used in smoothing algorithms as it preserves

differentiability (as formalized in Proposition II.1) and convexity (Li & Fang, 1997).

We denote the set of active functions at x ∈ Rd by Ω̂(x)
△
= {j ∈ Ω|f j(x) =

ψΩ(x)}. Except as stated in Appendix A, we denote components of a vector by

superscripts.

The parameter p > 0 is a smoothing precision parameter, where a larger p

implies higher precision as illustrated in Figure 1 and formalized by Proposition II.1;

see for example Polak et al. (2008). In Figure 1, Ω = {1, 2, 3} and the subscript “Ω”

has been dropped from the notation. The numbers in the subscripts are p values.

Proposition II.1. Suppose that Ω ⊆ Q and p > 0.

15

Figure 1. Smoothed Problems.

(i) If the functions f j(·), j ∈ Ω, are continuous, then ψpΩ(·) is continuous, and for
any x ∈ Rd, ψpΩ(x) decreases monotonically as p increases.

(ii) For any x ∈ Rd,

0 ≤ log |Ω̂(x)|
p

≤ ψpΩ(x)− ψΩ(x) ≤
log |Ω|
p

, (II.7)

where | · | represents the cardinality operator.

(iii) If the functions f j(·), j ∈ Ω, are continuously differentiable, then ψpΩ(·) is
continuously differentiable, with gradient

∇ψpΩ(x) =
∑
j∈Ω

µj
p(x)∇f j(x), (II.8)

where

µj
p(x)

△
=

exp(pf j(x))∑
k∈Ω

exp(pfk(x))
=

exp(p[f j(x)− ψΩ(x)])∑
k∈Ω

exp(p[fk(x)− ψΩ(x)])
∈ (0, 1), (II.9)

and
∑

j∈Ω µ
j
p(x) = 1 for all x ∈ Rd.

16

(iv) If the functions f j(·), j ∈ Ω, are twice continuously differentiable, then ψpΩ(·)
is twice continuously differentiable, with Hessian

∇2ψpΩ(x) =
∑
j∈Ω

µj
p(x)∇2f j(x) + p

∑
j∈Ω

µj
p(x)∇f j(x)∇f j(x)T

−p

[∑
j∈Ω

µj
p(x)∇f j(x)

][∑
j∈Ω

µj
p(x)∇f j(x)

]T
(II.10)

for all x ∈ Rd.

We define a continuous, nonpositive optimality function θΩ : Rd → R for all

x ∈ Rd by

θΩ(x)
△
= − min

µ∈ΣΩ

∑
j∈Ω

µj(ψΩ(x)− f j(x)) + 1
2

∥∥∥∥∥∑
j∈Ω

µj∇f j(x)

∥∥∥∥∥
2
 , (II.11)

where ΣΩ
△
= {µ ∈ R|Ω| | µj ≥ 0 ∀j ∈ Ω,

∑
j∈Ω µ

j = 1}. The following optimality

condition for (FMXΩ) is expressed in terms of θΩ(·); see Theorems 2.1.1, 2.1.3, and

2.1.6 of Polak (1997).

Proposition II.2. Suppose that the functions f j(·), j ∈ Q, are continuously dif-

ferentiable and that Ω ⊆ Q. If x∗ ∈ Rd is a local minimizer for (FMXΩ), then

θΩ(x
∗) = 0.

At stationary points of (FMXpΩ), the continuous, nonpositive optimality func-

tion θpΩ : Rd → R defined by θpΩ(x)
△
= − 1

2
∥∇ψpΩ(x)∥2 for all x ∈ Rd, vanishes to

zero.

C. RATE OF CONVERGENCE AND COMPLEXITY

This section examines the following basic smoothing algorithm, for which we

develop a series of complexity and rate-of-convergence results. We use this simple

algorithm to gain some fundamental insights on smoothing algorithms, but yet main-

tain tractability of the analysis. When they exist, we denote optimal solutions of

17

(FMX) and (FMXp) by x
∗ and x∗p, respectively, and the corresponding optimal val-

ues by ψ∗ and ψ∗
p. The algorithm applies the Armijo Gradient Method to (FMXp),

starting at an initial point x0. The value of p is fixed at p∗ and it guarantees that

Proposition II.3 stated below holds. The Armijo Gradient Method uses the steep-

est descent search direction and the Armijo stepsize rule to solve an unconstrained

problem; see for example Algorithm 1.3.3 of Polak (1997).

Algorithm II.1. Smoothing Armijo Gradient Algorithm

Data: Error tolerance t > 0, x0 ∈ Rd.

Parameter: δ ∈ (0, 1).

Step 1. Set p∗ = (log q)/((1− δ)t).

Step 2. Generate a sequence {xi}∞i=0 by applying Armijo Gradient Method to

(FMXp∗).

In this dissertation, we have several algorithms (including Algorithm II.1) with

no termination criteria stated in the algorithm procedure. In general for nonlinear

programming, there are often more than one possible termination criterion for each

algorithm. For example, a possible termination criterion for unconstrained nonlinear

optimization is the norm of the search direction falls below a certain small number.

Determining an appropriate criterion is often application dependent. In all our nu-

merical studies, we terminate the algorithms when (i) the current iterate falls within

a certain error tolerance of the optimal solution or objective function value, or (ii) the

solution satisfies the default tolerances of the solver used. We state the termination

criterion in the numerical section of each chapter.

Algorithm II.1 has the following property.

Proposition II.3. Suppose that q ≥ 2 and Step 2 of Algorithm II.1 has generated a

point xi ∈ Rd such that ψp∗(xi)− ψ∗
p∗ ≤ δt. Then ψ(xi)− ψ∗ ≤ t.

Proof. By the optimality of ψ∗
p∗ and (II.7), ψ∗

p∗ ≤ ψp∗(x
∗) ≤ ψ∗ + (log q)/p∗. Thus,

−ψ∗ ≤ −ψ∗
p∗ + (log q)/p∗. Based on (II.7), ψ(xi) ≤ ψp∗(xi) and hence, ψ(xi)− ψ∗ ≤

18

ψp∗(xi)−ψ∗
p∗+(log q)/p∗. Since ψp∗(xi)−ψ∗

p∗ ≤ δt and p∗ is as in Step 1, the conclusion

follows.

In the proposition above, the number of functions considered has been con-

strained to be two or more (q ≥ 2) as it is not meaningful to take the pointwise

maximum of a single function. For a fixed p > 0, the rate of convergence of the

Armijo Gradient Method as applied to (FMXp) is well known (see for example p. 60

of Polak, 1997). However, the value of the precision parameter p∗ in Algorithm II.1 is

dictated by q and t (see Step 1), which complicates the analysis. For large values of q

or small values of t, p∗ is large and hence (FMXp∗) may be ill-conditioned as observed

empirically (Polak et al., 2003). In this chapter, we quantify the ill-conditioning of

(FMXp) as a function of p and obtain complexity and rate of convergence results for

Algorithm II.1.

1. Ill-Conditioning of Smoothed Problem

The following strong convexity assumption is a standard assumption required

for complexity and rate of convergence analyses.

Assumption II.4. The functions f j(·), j ∈ N, are

(i) twice continuously differentiable and

(ii) there exists an m > 0 such that

m∥y∥2 ≤ ⟨y,∇2f j(x)y⟩, (II.12)

for all x, y ∈ Rd, and j ∈ N.

Lemma II.5. Suppose that Assumption II.4 holds. Then for any x, y ∈ Rd, q ∈ N,

and p > 0,

m∥y∥2 ≤
⟨
y,∇2ψp(x)y

⟩
, (II.13)

with m as in Assumption II.4.

19

Proof. From (II.10) and (II.12), we obtain that⟨
y,∇2ψp(x)y

⟩
=

∑
j∈Q

µj
p(x)

⟨
y,∇2f j(x)y

⟩
+ p

∑
j∈Q

µj
p(x)

⟨
y,∇f j(x)∇f j(x)Ty

⟩
− p

⟨
y,

[∑
j∈Q

µj
p(x)∇f j(x)

][∑
j∈Q

µj
p(x)∇f j(x)

]T
y

⟩
=

∑
j∈Q

µj
p(x)

⟨
y,∇2f j(x)y

⟩
+ p

∑
j∈Q

µj
p(x)

⟨
y,∇f j(x)

⟩2
− p

⟨
y,

[∑
j∈Q

µj
p(x)∇f j(x)

]⟩2

≥ m∥y∥2 + p
∑
j∈Q

µj
p(x)

⟨
y,∇f j(x)

⟩2 − p

⟨
y,

[∑
j∈Q

µj
p(x)∇f j(x)

]⟩2

.

Hence, we only need to show that the difference of the last two terms is nonnegative.

Let g : Rd → R be the convex function defined as g(z) = ⟨y, z⟩2 for y, z ∈ Rd. It

follows from Jensen’s inequality (see for example p. 6 of Urruty & Baptiste, 1996)

that ∑
j∈Q

µj
p(x)g

(
∇f j(x)

)
≥ g

(∑
j∈Q

µj
p(x)∇f j(x)

)
. (II.14)

Since p > 0, the result follows.

For any matrix A ∈ Rm×n, we adopt the matrix norm ∥A∥ △
= max∥u∥=1 ∥Au∥,

where u ∈ Rn. Under Assumption II.4(i), |f j(x)|, ∥∇f j(x)∥, and ∥∇2f j(x)∥ are

bounded on bounded subsets of Rd for given j ∈ N.

Assumption II.6. For any bounded set S ⊂ Rd, there exists a K ∈ (0,∞) such that

max{|f j(x)|, ∥∇f j(x)∥, ∥∇2f j(x)∥} ≤ K for all x ∈ S, j ∈ N.

The assumption above holds for example under standard assumptions when

f j(·), j ∈ N, arise from discretization of semi-infinite max functions. Under this

assumption, we obtain the following useful result.

Lemma II.7. Suppose that Assumptions II.4(i) and II.6 hold. Then for every bounded

set S ⊂ Rd,

⟨y,∇2ψp(x)y⟩ ≤ pL∥y∥2 (II.15)

20

for all x ∈ S, y ∈ Rd, q ∈ N, and p ≥ 1, where L = K+2K2, with K as in Assumption

II.6.

Proof. From the theory of matrix algebra, for matrices A ∈ Rm×n, B ∈ Rn×r, and

vector x ∈ Rn, we have that ∥Ax∥ ≤ ∥A∥∥x∥, ∥AB∥ ≤ ∥A∥∥B∥, and ∥xxT∥ = ∥x∥2

(see for example p. 26 of Gill, Murray, & Wright, 1991). We consider each of the

three terms of ∇2ψp(·); see (II.10). Recall that
∑

j∈Q µ
j
p(x) = 1 for all x ∈ Rd, q ∈ N,

and p > 0. For any x ∈ S, y ∈ Rd, and q ∈ N, under Assumption II.6, we obtain for

the first term that⟨
y,
∑
j∈Q

µj
p(x)∇2f j(x)y

⟩
≤ ∥y∥

∥∥∥∥∥
(∑

j∈Q

µj
p(x)∇2f j(x)

)
y

∥∥∥∥∥
≤ ∥y∥2

∑
j∈Q

µj
p(x)

∥∥∇2f j(x)
∥∥ ≤ K∥y∥2, (II.16)

where K is the constant in Assumption II.6 corresponding to S. Next, for the second

term of ∇2ψp(·),⟨
y,
∑
j∈Q

µj
p(x)∇f j(x)∇f j(x)Ty

⟩
≤ ∥y∥2

∥∥∥∥∥∑
j∈Q

µj
p(x)∇f j(x)∇f j(x)T

∥∥∥∥∥
≤ ∥y∥2

(∑
j∈Q

µj
p(x)

∥∥∇f j(x)∇f j(x)T
∥∥)

≤ K2∥y∥2. (II.17)

For the third term, we obtain that

−

⟨
y,

[∑
j∈Q

µj
p(x)∇f j(x)

][∑
j∈Q

µj
p(x)∇f j(x)

]T
y

⟩

≤ ∥y∥2
∥∥∥∥∥∥
[∑
j∈Q

µj
p(x)∇f j(x)

][∑
j∈Q

µj
p(x)∇f j(x)

]T∥∥∥∥∥∥ ≤ K2∥y∥2. (II.18)

Hence, for all x ∈ S, y ∈ Rd, q ∈ N and p ≥ 1, ⟨y,∇2ψp(x)y⟩ ≤ (K + pK2 +

pK2)∥y∥2 ≤ p(K + 2K2)∥y∥2.

Lemma II.7 enables us to quantify the rate of convergence of the Armijo Gra-

dient Method for (FMXp), as a function of p ≥ 1, which we consider next.

21

Proposition II.8. Suppose that Assumptions II.4 and II.6 hold. For any bounded

set S ⊂ Rd, there exists a k ∈ (0, 1) such that the rate of convergence of the Armijo

Gradient Method to solve (FMXp), initialized by x0 ∈ S, is linear with coefficient

1 − k/p for any p ≥ 1 and q ∈ N. That is, for all sequences {xi}∞i=0 ⊂ Rd generated

by the Armijo Gradient Method when applied to (FMXp), for any p ≥ 1, q ∈ N, and

x0 ∈ S, we have that

ψp(xi+1)− ψ∗
p

ψp(xi)− ψ∗
p

≤ 1− k

p
for all i ∈ N0. (II.19)

Proof. It follows by Lemma II.5 and Assumption II.6, and the fact that x0 ∈ S,

that there exists a bounded set S ′ ⊂ Rd such that all sequences generated by Armijo

Gradient Method on (FMXp), initialized by x0 ∈ S, are contained in S ′ for all p ≥ 1,

q ∈ N, x0 ∈ S. Let m be as in Assumption II.4 and K be the constant in Assumption

II.6 corresponding to S ′. In view of Lemmas II.5 and II.7,

m∥y∥2 ≤
⟨
y,∇2ψp(x)y

⟩
≤ pL∥y∥2, (II.20)

for all x ∈ S ′, y ∈ R, q ∈ N, and p ≥ 1, where L = K + 2K2. Hence, we deduce

from Theorem 1.3.7 of Polak (1997) that the rate of convergence for Armijo Gradient

Method to solve (FMXp) is linear with coefficient 1− 4mβα(1− α)/(pL) ∈ (0, 1) for

all p ≥ 1, q ∈ N, x0 ∈ S, where α, β ∈ (0, 1) are the Armijo line search parameters.

Hence,

k = 4mβα(1− α)/L, (II.21)

which is less than unity because α(1−α) ∈ (0, 1/4] and m ≤ L in view of (II.20).

2. Complexity

The results above enable us to identify the complexity of Algorithm II.1 un-

der the following assumption on the computational work required for function and

gradient evaluations. We let t0
△
= ψ(x0)− ψ∗ for a given x0 ∈ Rd and q ∈ N.

Assumption II.9. There exist constants a, b ∈ (0,∞) such that for any d ∈ N,

j ∈ N, and x ∈ Rd, the computational work to evaluate either f j(x) or ∇f j(x) is no

larger than adb.

22

Assumption II.9 holds for all problem instances considered in this chapter (see

Appendix A) and appears reasonable for many practical situations. The following

result can easily be modified to account for other assumption about work per function

and gradient evaluation.

Theorem II.10. Suppose that Assumptions II.4, II.6, and II.9 hold, and that Algo-

rithm II.1 terminates after n iterations with ψ(xn)−ψ∗ ≤ t. Then for any d ∈ N and

bounded set S ⊂ Rd, there exist constants c, c′, t′ ∈ (0,∞) such that the computational

work until termination for Algorithm II.1 is no larger than

c
q log q log c′

δt

(1− δ)t
, (II.22)

for all q ∈ N, q ≥ 2, x0 ∈ S, δ ∈ (0, 1), and t ∈ (0, t′].

Proof. Let q ≥ 2 and t ∈ (0, log q], which ensures that p∗ = (log q)/[(1 − δ)t] > 1.

Thus, Proposition II.8 applies and the number of iterations of the Armijo Gradient

Method to generate {xi}ni=0 such that ψp∗(xn)− ψ∗
p∗ ≤ δt is no larger than⌈

log δt
t0

log(1− k
p∗
)

⌉
, (II.23)

where k is the constant in Proposition II.8 corresponding to S and ⌈·⌉ denotes the

ceiling operator. In view of Proposition II.3, xn also satisfies ψ(xn) − ψ∗ ≤ t. Since

the main computational work in each iteration for the Armijo Gradient Method is to

determine ∇ψp∗(xi), it follows by Assumption II.9 that there exist a, b <∞ such that

the computational work in each iteration of the Armijo Gradient Method when applied

to (FMXp∗) is no larger than aqdb. Thus, the computational work in Algorithm II.1

to termination at xn is no larger than (II.23) multiplied by aqdb. Let f 1∗ denote the

minimum value of f 1(·), which is finite according to Assumption II.4. Let K be the

constant in Assumption II.6 corresponding to S. We then find that t0 = ψ(x0)−ψ∗ ≤

K − f 1∗ △
= c′, for any x0 ∈ S and q ∈ N. It follows that the computational work in

Algorithm II.1 to termination at xn is no larger than

aqdb

⌈
log δt

c′

log(1− k
p∗
)

⌉
(II.24)

23

for any q ∈ N, q ≥ 2, x0 ∈ S, δ ∈ (0, 1), and t ∈ (0, log q]. Since log x ≤ x − 1 for

x ∈ (0, 1], it follows by the choice of p∗ that the computational work in Algorithm

II.1 to termination at xn is no larger than

aqdb

 log δt
c′

log
(
1− k(1−δ)t

log q

)
 ≤ aqdb

⌈
log c′

δt
k(1−δ)t
log q

⌉
, (II.25)

for all q ∈ N, q ≥ 2, x0 ∈ S, δ ∈ (0, 1), and t ∈ (0,min{log q, c′}].

There exists a t′ ∈ (0,min{log q, c′}] such that
log q log c′

δt

k(1−δ)t
≥ 1

2
for all t ∈ (0, t′],

q ∈ N, q ≥ 2, and δ ∈ (0, 1). This then implies that for all q ∈ N, q ≥ 2, x0 ∈ S,

δ ∈ (0, 1), and t ∈ (0, t′],

aqdb

⌈
log q log c′

δt

k(1− δ)t

⌉
≤ 2aqdb

(
log q log c′

δt

k(1− δ)t

)
=

2adb

k

(
q log q log c′

δt

(1− δ)t

)
. (II.26)

Since k (see (II.21)) only depends on m from Assumption II.4, K from Assumption

II.6, and user-defined parameters, the conclusion follows.

We deduce from Theorem II.10 and its proof that the number of iterations of

Algorithm II.1 required to achieve a solution with value within t of the optimal value

of (FMX) is O((1/t) log 1/t) for fixed q ≥ 2, d ∈ N, and δ ∈ (0, 1). This is worse than

for example the Pshenichnyi-Pironneau-Polak (PPP) min-max algorithm (Algorithm

2.4.1 in Polak, 1997) and the modified conjugate gradient method on pp. 282-283 of

Nemirovski and Yudin (1983), , which achieves O(log 1/t). The SQP algorithm in

Zhou and Tits (1996) may also require a low number of iterations as it converges

superlinearly, but its complexity in t is unknown. The larger number of iterations for

Algorithm II.1 is caused by the fact that the Armijo Gradient Method exhibits slower

rate of convergence as p increases (see Proposition II.8) and a larger p is required in

Algorithm II.1 for a smaller t.

We next discuss the complexity of smoothing algorithms as compared to the

SQP algorithms. We consider a sequence of finite minimax problems with the same

number of variables d, but with an increasing number of functions q. This occurs

24

for example, in the solution of semi-infinite minimax problems using discretization

algorithms, which we discuss in Chapter III.

When we also include the work per iteration of Algorithm II.1, we see from

Theorem II.10 that for fixed t ∈ (0, t′], d ∈ N, and δ ∈ (0, 1), the complexity is

O(q log q). For comparison, the complexity of SQP and PPP algorithms to achieve a

near-optimal solution of (FMX) is larger as we see next.

The main computational work in an iteration of an SQP algorithm involves

solving a convex QP with d+ 1 variables and q inequality constraints (Zhou & Tits,

1996). Introducing slack variables to convert into standard form, this subproblem

becomes a convex QP with d + 1 + q variables and q equality constraints. Based

on Monteiro and Adler (1989), the computational work to solve the converted QP is

O((d+ 1+ q)3). Assuming that the number of iterations an SQP algorithm needs to

achieve a near-optimal solution of (FMX) is O(1), for fixed t ∈ (0, t′] and d ∈ N, the

complexity of an SQP algorithm to achieve a near-optimal solution of (FMX) is no

better than O(q3). The same result holds for the PPP algorithm. This complexity,

when compared with O(q log q) of Algorithm II.1, indicates that smoothing algorithms

may be more efficient than SQP and PPP algorithms for (FMX) with large q. We

carry out a comprehensive numerical comparison of smoothing algorithms with SQP

and PPP algorithms in Section II.E. We note that the modified conjugate gradient

method on pp. 282-283 of Nemirovski and Yudin (1983), may also have a low com-

plexity in q, but this depends on its implementation and the method is only applicable

to convex problems.

3. Optimal Parameter Choice

We see from Theorem II.10 that the computational work in Algorithm II.1

depends on the algorithm parameter δ. In this subsection, we find an “optimal”

choice of δ. A direct minimization of (II.22) with respect to δ appears difficult and

thus, we carry out a rate analysis and determine an optimal δ in that context.

The notation t ↓ 0 means t approaches zero from above. We first consider the

25

situation as t ↓ 0 and let δt ∈ (0, 1) be a choice of δ in Algorithm II.1 for a specific

t. For fixed d ∈ N, q ∈ N, q ≥ 2, S ⊂ Rd, and x0 ∈ S, let c and c′ be as in Theorem

II.10 and let wt denote (II.22) viewed as a function of t > 0, with δ replaced by δt,

i.e.,

wt
△
= c̃

log c′

δtt

(1− δt)t
(II.27)

with c̃ = cq log q for all t > 0. The next result shows that the choice of {δt ∈ (0, 1) | t >

0} influences the rate with which wt → ∞, as t ↓ 0. However, any constant δt for all

t > 0 results in the slowest possible rate of increase in wt, an asymptotic rate of 1/t,

as t ↓ 0.

Theorem II.11. For any {δt ∈ (0, 1) | t > 0},

lim sup
t↓0

logwt

log t
≤ −1. (II.28)

If δt = a ∈ (0, 1) for all t > 0, then

lim
t↓0

logwt

log t
= −1. (II.29)

Proof. There exists a t1 ∈ (0,∞) such that log c′

δtt
≥ 1 for all t ∈ (0, t1] and any

{δt ∈ (0, 1) | t > 0}. Hence, for any t ∈ (0,min{1, t1}) and δt ∈ (0, 1),

logwt

log t
=

log c̃

log t
+

log log c′

δtt

log t
− log(1− δt)

log t
− log t

log t
(II.30)

≤ log c̃

log t
− 1,

and the first part follows. Taking limits in (II.30), with δt = a, yields the second

part.

We next consider the situation as q → ∞ and, similar to above, let δq ∈ (0, 1)

be a choice of δ in Algorithm II.1 for a specific q ∈ N. For fixed d ∈ N and S ⊂ Rd,

let c and c′ be as in Theorem II.10. There exists a t1 ∈ (0,∞) such that log(c/t) ≥ 0

and log(c′/t) ≥ 1 for all t ∈ (0, t1]. For any given q ∈ N, q ≥ 2 and t ∈ (0, t1], let wq

denote (II.22) viewed as a function of q, with δ replaced by δq, i.e.,

wq
△
=
(c
t

) q log q log c′

δqt

(1− δq)
. (II.31)

26

The next result shows that the choice of {δq}∞q=2 influences the rate with which

wq → ∞, as q → ∞. However, for sufficiently small tolerance t > 0, as above, any

constant choice of δq for all q ∈ N results in the slowest possible rate of increase in

wq, as q → ∞. Hence, any constant δ ∈ (0, 1) in Algorithm II.1 is optimal in this

sense and results in the asymptotic rate of q, as q → ∞.

Theorem II.12. For any sequence of {δq}∞q=3, with δq ∈ (0, 1), we have that

logwq

log q
≥ 1 (II.32)

for all q ∈ N, q ≥ 3, and t ∈ (0, t1]. If δq = a, where a ∈ (0, 1) is a constant, then

lim
q→∞

logwq

log q
= 1. (II.33)

Proof. For q ≥ 3,

logwq

log q
=

log c
t

log q
+

log q

log q
+

log log q

log q
+

log log c′

δqt

log q
− log(1− δq)

log q
(II.34)

≥
log c

t

log q
+ 1 +

log log c′

δqt

log q
.

Since wq is defined only for t ∈ (0, t1], and log(c/t) ≥ 0 and log(c′/t) ≥ 1 for all

t ∈ (0, t1], it follows that (logwq)/ log q ≥ 1 for all q ≥ 3, t ∈ (0, t1], and {δq}∞q=3. The

proof for the second part follows from taking the limit in (II.34).

4. Rate of Convergence

The previous subsection considers the effect of the algorithm parameter δ

on the computational work required in Algorithm II.1. This parameter defines the

precision parameter through the relationship p∗ = (log q)/((1 − δ)t); see Step 1 of

Algorithm II.1. In this subsection, we do not restrict Algorithm II.1 to this class of

choices for p∗ and consider any positive value of the precision parameter. In particular,

we examine the progress made by Algorithm II.1 after n iterations for different choices

of p∗. Since the choice may depend on n, we denote by pn the precision parameter

used in Algorithm II.1 when terminated after n iterations. We examine the rate of

27

decay of an error bound on ψ(xn) − ψ∗, and also determine the “optimal choice” of

pn that produces the fastest rate of decay of the error bound as n→ ∞.

Suppose that Assumptions II.4 and II.6 hold. For a given bounded set S ⊂ Rd,

let k be as in Proposition II.8 and let {xi}ni=0, with x0 ∈ S, be a sequence generated by

Algorithm II.1 using p∗ = pn for some pn > 0. Then in view of (II.7) and Proposition

II.8,

ψ(xn)− ψ∗ ≤ ψpn(xn)− ψ∗
pn +

log q

pn

≤
(
1− k

pn

)n (
ψpn(x0)− ψ∗

pn

)
+

log q

pn

≤
(
1− k

pn

)n

(ψ(x0)− ψ∗) +
2 log q

pn
. (II.35)

We want to determine the “best” {pn}∞n=1 such that the error bound on ψ(xn) − ψ∗

defined by the right-hand side of (II.35) decays as fast as possible as n → ∞. We

denote that error bound by en, i.e., for any n ∈ N,

en
△
= t0

(
1− k

pn

)n

+
2 log q

pn
. (II.36)

We need the following trivial technical result.

Lemma II.13. For x ∈ [0, 1/2], −2x ≤ log(1− x) ≤ −x.

We next obtain that en asymptotically decays with a rate no faster than 1/n,

as n → ∞, regardless of the choice of pn, and that rate is attained with a particular

choice of pn.

Theorem II.14. The following statements hold for en in (II.36):

(i) For any {pn}∞n=1, with pn ≥ 1 for all n ∈ N, lim infn→∞ log en/ log n ≥ −1.

(ii) If pn = ζn/ log n for all n ∈ N, with ζ ∈ (0, k], then limn→∞ log en/ log n = −1.

(iii) If pn = n1−ν/ log n for all n ∈ N, with ν ∈ (0, 1), then limn→∞ log en/ log n =
−1 + ν.

28

Proof. For any n ∈ N, we see from (II.36) that

log en = log

(
exp

[
log t0 + n log

(
1− k

pn

)]
+

2 log q

pn

)
≥ log

(
max

{
exp

[
log t0 + n log

(
1− k

pn

)]
,
2 log q

pn

})
= max

{
log

(
exp

[
log t0 + n log

(
1− k

pn

)])
, log

2 log q

pn

}
.

Hence, for any n ∈ N, n > 1,

log en
log n

≥ max

 log t0
log n

+
n log

(
1− k

pn

)
log n

,− log pn
log n

+
log 2

log n
+

log log q

log n

 . (II.37)

Let ϵ > 0. Then there exists a n0 ∈ N such that (log log q)/ log n ≥ −ϵ for all n ≥ n0.

If (log pn)/ log n ≤ 1 and n ≥ max{2, n0}, then
log en
log n

≥ − log pn
log n

+
log 2

log n
+

log log q

log n
≥ − log pn

log n
− ϵ ≥ −1− ϵ. (II.38)

Alternatively, suppose that (log pn)/ log n > 1. Hence, n/pn < 1, and if n ≥ 2k, then

k/pn ∈ (0, 1/2]. Based on Lemma II.13 and (II.37),

log en
log n

≥ log t0
log n

+
n log

(
1− k

pn

)
log n

≥ log t0
log n

+
n
(
− 2k

pn

)
log n

≥ log t0
log n

− 2k

log n
(II.39)

for all n ≥ 2k such that (log pn)/ log n > 1. Thus, there exists a n1 ≥ max{n0, 2k}

such that
log t0
log n

− 2k

log n
≥ −1− ϵ (II.40)

for all n ≥ n1. Hence, for all n ≥ n1, (log en)/ log n ≥ −1 − ϵ. Since ϵ is chosen

arbitrarily, the first part follows. Next, we prove the second part of the theorem.

From (II.36), with pn = ζn/ log n, where ζ ∈ (0, k],

log en = log

(
exp

[
log t0 + n log

(
1− k log n

ζn

)]
+

2 log q log n

ζn

)
. (II.41)

There exists a n2 ∈ N such that (k log n)/ζn ∈ [0, 1/2] for all n ≥ n2. Thus, by

Lemma II.13,

log

(
exp

[
log t0 + n

(
−2k log n

ζn

)]
+

2 log q log n

ζn

)
≤ log en

≤ log

(
exp

[
log t0 + n

(
−k log n

ζn

)]
+

2 log q log n

ζn

)
(II.42)

29

for all n ≥ n2. We first consider the lower bound in (II.42),

log

(
exp

[
log t0 + n

(
−2k log n

ζn

)]
+

2 log q log n

ζn

)
= log

(
2 log q log n

ζn

[
exp

(
log t0 + log n−2k/ζ

)
2 log q logn

ζn

+ 1

])

= log

(
2 log q log n

ζn

)
+ log

(
t0ζn

1− 2k
ζ

2 log q log n
+ 1

)
. (II.43)

Since ζ ∈ (0, k], and by continuity of the log(·) function,

lim
n→∞

log

(
t0ζn

1− 2k
ζ

2 log q log n
+ 1

)
= 0. (II.44)

Continuing from (II.43), and using (II.44), we obtain that

lim
n→∞

log
(

2 log q logn
ζn

)
+ log

(
t0ζn

1− 2k
ζ

2 log q logn
+ 1

)
log n

= lim
n→∞

log 2 + log log q + log log n− log ζ − log n

log n
= −1. (II.45)

Similar arguments yield that the upper bound in (II.42) also tends to −1, as n→ ∞.

Hence, the second conclusion follows. The third part of the theorem follows by similar

arguments.

We see from Theorem II.14 that the “best” choice of pn is pn = ζn/ log n,

with ζ ∈ (0, k], and that choice results in an asymptotic rate of decay of error bound

of 1/n. The constant k may be unknown as it depends on m of Assumption II.4

and K of Assumption II.6; see (II.21). Consequently, pn = ζn/ log n may be difficult

to implement. Theorem II.14 shows that the choice pn = n1−ν/ log n with a small

ν ∈ (0, 1) is almost as good (it results in asymptotic rate 1/n1−ν instead of rate 1/n)

and is independent of k.

Roughly speaking, a rate of decay of error bound of no better than 1/n in-

dicated by Theorem II.14 means that the required number of iterations to achieve

an error tolerance t increases at least at rate 1/t as t approaches zero. In view of

30

Theorem II.11, the rate 1/t is attained with the precision parameter choice in Step

1 of Algorithm II.1. Hence, the choice in Step 1 of Algorithm II.1 for the precision

parameter cannot be improved.

Theorems II.11 and II.14 indicate that Algorithm II.1 may only converge sub-

linearly. In contrast, Theorem II.10 shows that smoothing algorithms may still be

capable of yielding competitive run times against other algorithms when q is large due

to low computational work per iteration. For smoothing algorithms to be competitive

in empirical test, however, we need to go beyond the basic Algorithm II.1 and develop

more sophisticated, adaptive precision-adjustment schemes as discussed next.

D. SMOOTHING ALGORITHMS AND ADAPTIVE PRE-
CISION ADJUSTMENT

The previous section shows that the choice of precision parameter influences

the rate of convergence, since the degree of ill-conditioning in (FMXp) depends on

the precision parameter. This section presents two smoothing algorithms with novel

precision-adjustment schemes for (FMX). The results in Polak et al. (2003) and

our preliminary numerical tests strongly indicate that adaptive precision-adjustment

schemes are superior to static and open-loop schemes in their ability to avoid ill-

conditioning. Thus, we focus on adaptive precision-adjustment schemes in our smooth-

ing algorithms.

The first algorithm, Algorithm II.2 follows Algorithm 3.2 in Polak et al. (2008),

but uses a much simpler scheme for precision adjustment. The second algorithm,

Algorithm II.3, adopts a novel line-search rule that aims to ensure descent in ψ(·)

and, if that is not possible, increases the precision parameter. Previous smoothing

algorithms (Polak et al., 2003, 2008) do not check for descent in ψ(·). The new

algorithms implement active-set strategies adapted from Polak et al. (2008).

We use the following notation. The ϵ-active set, ϵ > 0, is denoted by

Qϵ(x)
△
= {j ∈ Q|ψ(x)− f j(x) ≤ ϵ}. (II.46)

31

As in Algorithm 3.2 of Polak et al. (2008), we compute a search direction using a

d× d matrix BpΩ(x). We consider two options. When

BpΩ(x) = I, (II.47)

the d × d identity matrix, the search direction is equivalent to the steepest descent

direction. When

BpΩ(x) = ηpΩ(x)I +HpΩ(x), (II.48)

the search direction is a Quasi-Newton direction, where

HpΩ(x)
△
= p

∑
j∈Ω

µj
p(x)∇f j(x)∇f j(x)T −

(∑
j∈Ω

µj
p(x)∇f j(x)

)(∑
j∈Ω

µj
p(x)∇f j(x)

)T
 ,

(II.49)

ηpΩ(x)
△
= max{0, φ− epΩ(x)}, (II.50)

φ > 0, and epΩ(x) is the smallest eigenvalue of HpΩ(x). The quantity ηpΩ(x) ensures

that BpΩ(x) is positive definite. The Quasi-Newton direction given in (II.48)-(II.50)

is adopted from Polak et al. (2008). Polak et al. (2008) observe that when p → ∞,

the first term in the Hessian function (II.10) becomes negligible, thus they ignore the

first term.

We next present the two algorithms and proofs for their convergence.

1. Smoothing Algorithm Based on Optimality Func-
tion

We first consider the following smoothing algorithm, with a simple adaptive

precision-adjustment scheme.

Algorithm II.2.

Data: x0 ∈ Rd.

Parameters and Auxiliary Functions: α, β ∈ (0, 1), p0 ≥ 1, ω = (10 log q)/p0,

function BpΩ(·) as in (II.47) or (II.48), ϵ0 > 0, ξ > 1, ς > 1, φ ≥ 1.

32

Step 1. Set i = 0, j = 0,Ω0 = Qϵ0(x0).

Step 2. Compute the search direction hpiΩi
(xi) by solving

BpiΩi
(xi)hpiΩi

(xi) = −∇ψpiΩi
(xi). (II.51)

Step 3. Compute the stepsize λi = βki , where ki is the largest integer k such that

ψpiΩi
(xi + βkhpiΩi

(xi))− ψpiΩi
(xi) ≤ −αβk∥hpiΩi

(xi)∥2 (II.52)

and

ψpiΩi
(xi + βkhpiΩi

(xi))− ψ(xi + βkhpiΩi
(xi)) ≥ −ω. (II.53)

Step 4. Set

xi+1 = xi + βkihpiΩi
(xi), (II.54)

Ωi+1 = Ωi ∪Qϵi(xi+1). (II.55)

Step 5. Enter Subroutine II.1, and go to Step 2 on exit from Subroutine II.1.

Subroutine II.1. Adaptive Precision-Parameter Adjustment using Optimality Func-
tion

If

θpiΩi
(xi+1) ≥ −ϵi, (II.56)

set x∗j = xi+1, set pi+1 = ξpi, set ϵi+1 = ϵi/ς, replace i by i + 1, replace j by j + 1,

and exit Subroutine II.1.

Else, set pi+1 = pi, set ϵi+1 = ϵi, replace i by i+ 1, and exit Subroutine II.1.

Steps 1 to 4 of Algorithm II.2 are adopted from Algorithm 3.2 of Polak

et al. (2008). We note the unusual choice of the right-hand side in (II.52), where

−∥hpiΩi
(xi)∥2 is used instead of the conventional ⟨∇ψpiΩi

(xi), hpiΩi
(xi)⟩. Test runs

show that Algorithm II.2 with −∥hpiΩi
(xi)∥2 is slightly more efficient than with the

conventional ⟨∇ψpiΩi
(xi), hpiΩi

(xi)⟩. To allow direct comparison with Algorithm 3.2

of Polak et al. (2008), we use −∥hpiΩi
(xi)∥2 in Algorithm II.2.

33

The test in (II.53) prevents the construction of a point xi+1 where ψ(xi+1)

is much greater than ψ(xi) during the early iterations when the set Ωi is small; see

Polak et al. (2008).

The key difference between Algorithm II.2 and Algorithm 3.2 of Polak et al.

(2008) is the simplified scheme to adjust pi in Subroutine II.1. This difference calls

for a different proof of convergence as compared to Polak et al. (2008), and will be

based on consistent approximation; see Section I.D.3. Let P denote an increasing

sequence of positive real numbers that approach infinity.

The following result shows that the pairs ((FMXpΩ), θpΩ(·)) in the sequence

{((FMXpΩ), θpΩ(·))}p∈P are indeed consistent approximations to ((FMXΩ), θΩ(·)). This

is subsequently used in the proof of convergence of Algorithm II.2.

Theorem II.15. Suppose that Assumption II.4(i) holds. Then for any Ω ⊂ N,

the pairs ((FMXpΩ), θpΩ(·)) in the sequence {((FMMPpΩ), θpΩ(·))}p∈P are consistent

approximations to ((FMXΩ), θΩ(·)).

Proof. We follow the proofs of Lemmas 4.3 and 4.4 in Polak (2003), but simplify

the arguments as Polak (2003) deals with min-max-min problems. According to

Theorem 3.3.2 of Polak (1997), (FMXpiΩ) epi-converges to (FMXΩ), as i → ∞ if

and only if (i) for any x∗ ∈ Rd, there exists a sequence {xi}∞i=0, with xi ∈ Rd, such

that xi → x∗ and pi → ∞, as i → ∞, lim supi→∞ ψpiΩ(xi) ≤ ψΩ(x
∗) and (ii) for

any sequence {xi}∞i=0, such that xi ∈ Rd, xi → x∗ ∈ Rd, and pi → ∞ as i → ∞,

lim infi→∞ ψpiΩ(xi) ≥ ψΩ(x
∗).

(i) Let x∗ ∈ Rd. Construct a sequence {xi}∞i=0, where xi = x∗ for all i.

Obviously, xi → x∗ as i → ∞. According to Proposition II.1(ii), ψpΩ(x) → ψΩ(x),

as p → ∞, this implies that lim supp→∞ ψpΩ(x
∗) = lim infp→∞ ψpΩ(x

∗) = ψΩ(x
∗).

Therefore, lim supi→∞ ψpiΩ(xi) = lim supi→∞ ψpiΩ(x
∗) = ψΩ(x

∗).

(ii) Let {xi}∞i=0 and {pi}∞i=0 be arbitrary sequences such that xi → x∗, x∗ ∈

Rd, and pi → ∞, as i → ∞. For any t > 0, there exists by continuity of ψΩ(·)

an i0 such that ψΩ(xi) − ψΩ(x
∗) < t

2
for all i ≥ i0. Moreover, from (II.7), there

34

exists an i1 such that ψpiΩ(x) − ψΩ(x) ≤ log(|Ω|)
pi

< t
2
for all i ≥ i1. Then for all

i ≥ max(i0, i1), ψpiΩ(xi)− ψΩ(x
∗) = ψpiΩ(xi)− ψΩ(xi) + ψΩ(xi)− ψΩ(x

∗) < t. Hence,

ψpiΩ(xi) → ψΩ(x
∗).

We next consider the optimality functions. Let {xi}∞i=0 ⊂ Rd and {pi}∞i=0, pi >

0 for all i, be arbitrary sequences and x∗ ∈ Rd be such that xi → x∗ and pi → ∞,

as i → ∞. Since µj
p(x) ∈ (0, 1) for any j ∈ Ω, p > 0, and x ∈ Rd, {µpi(xi)}∞i=0 is a

bounded sequence in R|Ω|, and, according to the Bolzano-Weierstrass Theorem, there

exists at least one convergent subsequence. For every such subsequenceK ⊂ N0, there

exists a µ∞ ∈ ΣΩ such that µpi(xi) →K µ∞, as i → ∞. Moreover, since µ∞ ∈ ΣΩ,∑
j∈Ω µ

j
∞ = 1.

If j /∈ Ω̂(x∗), then there exist a t > 0 and i0 ∈ N such that f j(xi)−ψΩ(xi) ≤ −t

for all i ≥ i0. Hence, from (II.9), µj
pi
(xi) → 0, as i → ∞, and therefore µj

∞ = 0. By

continuity of ∇f j(·), j ∈ Ω,

θpiΩ(xi) →K −1

2
∥
∑
j∈Ω

µj
∞∇f j(x∗)∥2 △

= θ∞Ω(x
∗), (II.57)

as i → ∞. Since µ∞ ∈ ΣΩ and µj
∞ = 0 for all j /∈ Ω̂(x∗), we find in view of (II.11)

that

θ∞Ω(x
∗) = −

∑
j∈Ω

µj
∞(ψΩ(x

∗)− f j(x∗))− 1

2
∥
∑
j∈Ω

µj
∞∇f j(x∗)∥2 ≤ θΩ(x

∗). (II.58)

This completes the proof.

The next result is identical to Lemma 3.1 in Polak et al. (2008).

Lemma II.16. Suppose that {xi}∞i=0 ⊂ Rd is a sequence constructed by Algorithm

II.2. Then there exists an i∗ ∈ N0 and a set Ω∗ ⊆ Q such that the working sets Ωi

satisfy Ωi = Ω∗ for all i ≥ i∗.

Proof. By construction, Ωi ⊆ Ωi+1 for all i ∈ N0. Since the set Q is finite, the lemma

must be true.

The following result ensures convergence of Algorithm II.2.

35

Theorem II.17. Suppose that Assumption II.4(i) holds. Then any accumulation

point x∗ ∈ Rd of a sequence {x∗j}∞j=0 ⊂ Rd constructed by Algorithm II.2 satisfies the

first-order optimality condition θ(x∗) = 0.

Proof. Let Ω∗ ⊆ Q and i∗ ∈ N0 be as in Lemma II.16, where Ωi = Ω∗ for all

i ≥ i∗. As Algorithm II.2 has the form of Master Algorithm Model 3.3.12 in Polak

(1997) for all i ≥ i∗, we conclude based on Theorem 3.3.13 of Polak (1997) that any

accumulation point x∗ of a sequence {x∗j}∞j=0 constructed by Algorithm II.2 satisfies

θΩ∗(x∗) = 0. The assumptions required to invoke Theorem 3.3.13 in Polak (1997):

(i) Continuity of ψΩ∗(·), ψpΩ∗(·), θΩ∗(·), and θpΩ∗(·), p > 0, which follows by Assump-
tion II.4(i), Proposition II.1(i), Theorem 2.1.6 of Polak (1997), and Proposition
II.1(iii), respectively.

(ii) The pairs ((FMXpΩ∗), θpΩ∗(·)) in the sequence {((FMXpΩ∗), θpΩ∗(·))}p∈P are con-
sistent approximations to ((FMXΩ∗), θΩ∗(·)), which follows by Theorem II.15.

(iii) If Steps 1 to 4 of Algorithm II.2 are applied repeatedly to (FMXpΩ∗) with a fixed
p > 0, then every accumulation point x̂ of a sequence {xk}∞k=0 constructed must
be a stationary point of (FMXpΩ∗), i.e., θpΩ∗(x̂) = 0, which follows by Theorem
3.2 in Polak et al. (2008).

Since θΩ∗(x∗) = 0, from (II.11), there exists a µ ∈ ΣΩ∗ such that

∑
j∈Ω∗

µj(ψΩ∗(x∗)− f j(x∗)) + 1
2

∥∥∥∥∥∑
j∈Ω∗

µj∇f j(x∗)

∥∥∥∥∥
2

= 0. (II.59)

Let π ∈ ΣQ, π
j = 0 for j ∈ Q − Ω∗, and πj = µj for j ∈ Ω∗. Thus, it follows from

(II.11) that

θ(x∗) ≥ −
∑
j∈Q

πj(ψ(x∗)− f j(x∗))− 1
2

∥∥∥∥∥∑
j∈Q

πj∇f j(x∗)

∥∥∥∥∥
2

= 0. (II.60)

Since θ(·) is a nonpositive function, the result follows.

2. Smoothing Algorithm Using Cost Descent

Next, we consider the second smoothing algorithm, which determines the step-

size based on the actual function ψ(·) rather than the smoothed function ψpΩ(·).

36

Algorithm II.3.

Data: x0 ∈ Rd.

Parameters and Auxiliary Functions: α, β ∈ (0, 1), function BpΩ(·) as in (II.47)

or (II.48), ϵ > 0, φ ≥ 1, p0 ≥ 1, p̂≫ p0, κ≫ 1, ξ > 1, γ > 0, ν ∈ (0, 1),∆p ≥ 1.

Step 0. Set i = 0,Ω0 = Qϵ(x0), k−1 = 0.

Step 1. Compute BpiΩi
(xi) and its largest eigenvalue σmax

piΩi
(xi). If

σmax
piΩi

(xi) ≥ κ, (II.61)

compute the search direction

hpiΩi
(xi) = −∇ψpiΩi

(xi). (II.62)

Else, compute the search direction hpiΩi
(xi) by solving the equation

BpiΩi
(xi)hpiΩi

(xi) = −∇ψpiΩi
(xi). (II.63)

Step 2a. Compute a tentative Armijo stepsize based on working set Ωi, starting

from the eventual stepsize of the previous iterate ki−1, i.e., determine

λpiΩi
(xi) = max

l∈{ki−1,ki−1+1,...}
βl

s.t. ψpiΩi
(xi + βlhpiΩi

(xi))− ψpiΩi
(xi) ≤ αβl⟨∇ψpiΩi

(xi), hpiΩi
(xi)⟩. (II.64)

Set

yi = xi + βlhpiΩi
(xi). (II.65)

Step 2b. Forward track from yi along direction hpiΩi
(xi) as long as ψ(·) continues

to decrease using the following subroutine.

Substep 0. Set l′ = l,

zil′ = xi + βl′hpiΩi
(xi) and zil′−1 = xi + βl′−1hpiΩi

(xi). (II.66)

Substep 1. If

ψ(zil′−1) < ψ(zil′), (II.67)

37

replace l′ by l′− 1, set zil′−1 = xi+β
l′−1hpiΩi

(xi), and repeat Substep 1.

Else, set zi = zil′ .

Substep 2. If pi ≤ p̂, go to Step 3. Else, go to Step 4.

Step 3. If

ψ(zi)− ψ(xi) ≤ − γ

piν
, (II.68)

set xi+1 = zi, pi+1 = pi, ki = l′, set Ωi+1 = Ωi ∪Qϵ(xi+1), replace i by i+ 1, and go to

Step 1.

Else, replace pi by ξpi, replace Ωi by Ωi ∪Qϵ(zi), and go to Step 1.

Step 4. If (II.68) holds, set xi+1 = zi, ki = l′, set pi+1 = pi + ∆p, set Ωi+1 =

Ωi ∪Qϵ(xi+1), replace i by i+ 1, and go to Step 1.

Else, set xi+1 = yi, ki = l, set pi+1 = pi +∆p, set Ωi+1 = Ωi ∪ Qϵ(xi+1), replace i by

i+ 1, and go to Step 1.

As is standard in stabilized Newton methods (see for example Section 1.4.4

of Polak, 1997), Algorithm II.3 switches to the steepest descent direction if BpΩ(·) is

given by (II.48) and the largest eigenvalue of BpΩ(·) is large; see Step 1. Compared

to Algorithm 3.2 in Polak et al. (2008), which increases p when ∥∇ψpiΩi
(xi)∥ is small,

Algorithm II.3 increases the precision parameter only when it does not produce suffi-

cient descent in ψ(·), as verified by the test (II.68) in Steps 3 and 4 of Algorithm II.3.

A small precision parameter may produce an ascent direction in ψ(·) due to the poor

accuracy of ψpiΩi
(·). Thus, insufficient descent is a signal that the precision param-

eter may be too small. All existing smoothing algorithms only ensure that ψpiΩi
(·)

decreases at each iteration, but do not ensure descent in ψ(·). Another change com-

pared to Polak et al. (2003, 2008) relates to the line search. All smoothing algorithms

are susceptible to ill-conditioning and small stepsizes. To counteract this difficulty,

Algorithm II.3 moves forward along the search direction starting from the Armijo

step, and stops when the next step is not a descent step in ψ(·); see Step 2b.

Algorithm II.3 has two rules for increasing pi. In the early stages of the

calculations, i.e., when pi ≤ p̂, if sufficient descent in ψ(·) is achieved when moving

38

from xi to zi ((II.68) satisfied), then Algorithm II.3 sets the next iterate xi+1 to zi,

retain the current value of the precision parameter as progress is made towards the

optimal solution of (FMX). However, if (II.68) fails, then there is insufficient descent

and the precision parameter or the working set needs to be modified to generate a

better search direction in the next iteration. In late stages of the calculations, i.e.,

pi > p̂, Algorithm II.3 accepts every new point generated, even those with insufficient

descent, and increases the precision parameter with a constant value.

The next lemma is similar to Lemma II.16.

Lemma II.18. Suppose that {xi}∞i=0 ⊂ Rd is a sequence constructed by Algorithm

II.3. Then there exists an i∗ ∈ N0 and a set Ω∗ ⊆ Q such that the working sets Ωi

satisfy Ωi = Ω∗ and ψΩ∗(xi) = ψ(xi) for all i ≥ i∗.

Proof. The first part of the proof follows exactly from the proof for Lemma II.16.

Next, since Q̂(xi) ⊆ Ωi for all i; see Steps 3 and 4 of Algorithm II.3, ψΩ∗(xi) = ψ(xi)

for all i ≥ i∗.

Lemma II.19. Suppose that Assumption II.4(i) holds, and that the sequences {xi}∞i=0 ⊂

Rd and {pi}∞i=0 ⊂ R are generated by Algorithm II.3. Then the following properties

hold: (i) the sequence {pi}∞i=0 is monotonically increasing; (ii) if the sequence {xi}∞i=0

has an accumulation point, then pi → ∞ as i→ ∞, and
∑∞

i=0 1/pi = +∞.

Proof. We follow the framework of the proof for Lemma 3.1 of Polak et al. (2003).

(i) The precision parameter is adjusted in Steps 3 and 4 of Algorithm II.3. In Step

3, if (II.68) is satisfied, then pi+1 = pi; if (II.68) fails, pi is replaced by ξpi > pi. In

Step 4, pi+1 = pi +∆p ≥ pi + 1 > pi.

(ii) Suppose that Algorithm II.3 generates the sequence {xi}∞i=0 with accumu-

lation point x∗ ∈ Rd, but {pi}∞i=0 is bounded from above. The existence of an upper

bound on pi implies that pi ≤ p̂ for all i ∈ N0, because if not, Algorithm II.3 will

enter Step 4 the first time at some iteration i′ ∈ N0, and re-enter Step 4 for all i > i′,

39

and pi → ∞ as i → ∞. Thus, the existence of an upper bound on pi implies that

Algorithm II.3 must never enter Step 4.

The existence of an upper bound on pi also implies that there exists an iteration

i∗ ∈ N0 such that (II.68) is satisfied for all i > i∗, because if not, pi will be replaced by

ξpi repeatedly, and pi → ∞ as i→ ∞. This means that ψ(xi+1)−ψ(xi) ≤ −γ/piν for

all i > i∗. Since pi ≤ p̂ for all i ∈ N0, ψ(xi) → −∞ as i→ ∞. However, by continuity

of ψ(·), and x∗ being an accumulation point, ψ(xi)→Kψ(x∗), where K ⊂ N0 is some

infinite subset. This is a contradiction, so pi → ∞.

Next, we prove that
∑∞

i=0 1/pi = +∞. Since pi → ∞, there exist an iteration

i∗ ∈ N0 such that pi > p̂ for all i ≥ i∗. This means that the precision parameter is

adjusted by the rule pi+1 = pi +∆p for all i ≥ i∗. The proof is complete by the fact

that
∑∞

i=1 1/i = ∞.

Lemma II.20. Suppose that Assumption II.4(i) holds. Then for every bounded set

S ⊂ Rd and parameters α, β ∈ (0, 1), there exist a K < ∞ such that, for all p ≥ 1,

Ω ⊆ Q, and x ∈ S,

ψpΩ(x+ λpΩ(x)hpΩ(x))− ψpΩ(x) ≤
−αK∥∇ψpΩ(x)∥2

p
, (II.69)

where λpΩ(x) is the stepsize defined by (II.64) and hpΩ(x) is the search direction as

defined by (II.62) or (II.63), with pi replaced by p, Ωi replaced by Ω, and xi replaced

by x.

Proof. If hpΩ(x) is given by (II.63) with BpΩ(x) as in (II.47), then the result follows

by the same arguments as in the proof for Lemma 3.2 of Polak et al. (2003). If

hpΩ(x) is given by (II.63) with BpΩ(x) as in (II.48), then the result follows by similar

arguments as in the proof for Lemma 3.4 of Polak et al. (2003), but the argument

deviates to account for (i) the lower bound on the eigenvalues of BpΩ(x) takes on the

specific value of 1 in Algorithm II.3, and (ii) we consider an arbitrary Ω ⊆ Q.

Based on Assumption II.4(i), (II.8), and the assumption that S is a bounded

set, there exists a constant M <∞ such that ∥∇ψpΩ(x)∥ ≤M , for all p ≥ 1, Ω ⊆ Q,

40

and x ∈ S. Let

SB
△
=
{
x ∈ Rd|∥x− x′∥ ≤M,x′ ∈ S

}
, (II.70)

and L < ∞ be the constant corresponding to SB such that (II.15) holds for all

x ∈ SB, y ∈ Rd and p ≥ 1. For any real d × d matrix A, let ∥A∥ denote its induced

matrix norm as defined on p. 20. If A is symmetric,

∥A∥ = σmax, (II.71)

whenever σmax ≥ 0, where σmax is the largest eigenvalue of A; see for example p. 3 of

Lang (2000). Now, suppose that p ≥ 1, Ω ⊆ Q, and x ∈ S are such that hpΩ(x) =

−BpΩ(x)
−1∇ψpΩ(x). Since all induced norms are consistent by definition, ∥hpΩ(x)∥ ≤

∥BpΩ(x)
−1∥∥∇ψpΩ(x)∥.

By construction, BpΩ(x) is symmetric and positive definite as the minimum

eigenvalue of BpΩ(x) is 1, because φ ≥ 1, and based on (II.50). Thus, BpΩ(x)
−1

is symmetric and positive definite; see for example Bertsekas, Nedic, and Ozdaglar

(2003, p. 16). Hence, using the fact that the eigenvalues of an inverse matrix are the

reciprocals of the eigenvalues of the original matrix, and (II.71),

∥hpΩ(x)∥ ≤ ∥BpΩ(x)
−1∥∥∇ψpΩ(x)∥ =

∥∇ψpΩ(x)∥
σmin
pΩ (x)

, (II.72)

and

⟨∇ψpΩ(x), hpΩ(x)⟩ ≤ −∥∇ψpΩ(x)∥2

σmax
pΩ (x)

, (II.73)

where σmin
pΩ (x) and σmax

pΩ (x) are the smallest and largest eigenvalues of BpΩ(x) respec-

tively. From Step 1 of Algorithm II.3, we see that the direction in (II.63) is selected

only when σmax
pΩ (x) < κ, and by construction according to (II.50), σmin

pΩ (x) ≥ 1. Hence,

from (II.72) and (II.73),

∥hpΩ(x)∥ ≤ ∥∇ψpΩ(x)∥ (II.74)

and

⟨∇ψpΩ(x), hpΩ(x)⟩ ≤ −∥∇ψpΩ(x)∥2

κ
. (II.75)

41

It follows directly from (II.62) that (II.74) and (II.75) also hold when hpΩ(x) =

−∇ψpΩ(x).

Next, for all λ ∈ (0, 1], x ∈ S and p ≥ 1, using the Mean-Value Theorem

(see for example Section 5.1.28 of Polak, 1997) and Lemma II.7, we have for some

s ∈ [0, 1],

ψpΩ(x+ λhpΩ(x))− ψpΩ(x)− αλ⟨∇ψpΩ(x), hpΩ(x)⟩

= λ(1− α)⟨∇ψpΩ(x), hpΩ(x)⟩+ 1
2
λ2 ⟨hpΩ(x),∇2ψpΩ (x+ sλhpΩ(x))hpΩ(x)⟩

≤ λ(1− α)⟨∇ψpΩ(x), hpΩ(x)⟩+ 1
2
λ2pL∥hpΩ(x)∥2

≤ −λ∥∇ψpΩ(x)∥2
[
1− α

κ
− 1

2
λpL

]
. (II.76)

Let

λ∗
△
= min

{
1,

2(1− α)

pLκ

}
. (II.77)

Then it follows from (II.77) that, for every λ ∈ (0, λ∗], we have

ψpΩ(x+ λhpΩ(x))− ψpΩ(x)− αλ⟨∇ψpΩ(x), hpΩ(x)⟩ ≤ 0. (II.78)

Hence, by (II.78) and the stepsize rule in (II.64),

λpΩ(x) ≥ βλ∗ (II.79)

for all p ≥ 1, Ω ⊆ Q, and x ∈ S. Consequently, by (II.64) and (II.79), we have that

ψpΩ(x+ λpΩ(x)hpΩ(x))− ψpΩ(x)

≤ −αλpΩ(x)⟨∇ψpΩ(x), hpΩ(x)⟩

≤ −αmin

{
β,

2β(1− α)

pLκ

}
∥∇ψpΩ(x)∥2

κ
(II.80)

for all p ≥ 1, Ω ⊆ Q, and x ∈ S. Hence, the conclusion follows with

K = min

{
β,

2β(1− α)

Lκ

}
. (II.81)

This completes the proof.

42

Lemma II.21. Suppose that Assumption II.4(i) holds and that {xi}∞i=0 ⊂ Rd is a

bounded sequence generated by Algorithm II.3. Let Ω∗ ⊆ Q and i∗ ∈ N0 be as in

Lemma II.18, where Ωi = Ω∗ for all i ≥ i∗. Then there exists an accumulation point

x∗ ∈ Rd of the sequence {xi}∞i=0 such that θΩ∗(x∗) = 0.

Proof. For the sake of contradiction, we assume that there exist a ρ > 0 such that

lim inf
i→∞

∥∇ψpiΩ∗(xi)∥ ≥ ρ. (II.82)

Since {xi}∞i=0 is a bounded sequence, it has at least one accumulation point according

to the Bolzano-Weierstrass Theorem. Hence, by Lemma II.19, pi → ∞, as i → ∞.

Consider two cases, xi+1 = yi or xi+1 = zi in Algorithm II.3.

If xi+1 = yi, by Lemma II.20, there exists an M <∞ such that

ψpiΩ∗(xi+1)− ψpiΩ∗(xi) ≤ −αM∥∇ψpiΩ∗(xi)∥2

pi
, (II.83)

for i ≥ i∗. Hence,

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) = ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi+1) + ψpiΩ∗(xi+1)− ψpiΩ∗(xi)

≤ −αM∥∇ψpiΩ∗(xi)∥2

pi
, (II.84)

for i ≥ i∗, where we have used the fact from Proposition II.1(i) that

ψpi+1Ω∗(xi+1) ≤ ψpiΩ∗(xi+1), (II.85)

for i ≥ i∗, because pi+1 ≥ pi from Lemma II.19.

Next, if xi+1 = zi, then (II.68) is satisfied. It follows from (II.7) and Lemma

II.18 that,

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) ≤ ψΩ∗(xi+1) +
log |Ω∗|
pi+1

− ψΩ∗(xi)

= ψ(xi+1) +
log |Ω∗|
pi+1

− ψ(xi)

≤ − γ

piν
+

log |Ω∗|
pi

=
−γ + pi

ν−1 log |Ω∗|
piν

. (II.86)

43

From (II.84) and (II.86), for all i ≥ i∗,

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) ≤ max

{
−αM∥∇ψpiΩ∗(xi)∥2

pi
,
−γ + pi

ν−1 log |Ω∗|
piν

}
.

(II.87)

By Proposition II.1(iii), ∥∇ψpiΩ∗(xi)∥ is bounded because {xi}∞i=0 is bounded. Since

ν ∈ (0, 1), there exists an i∗∗ ∈ N0, where i
∗∗ ≥ i∗, such that

−αM∥∇ψpiΩ∗(xi)∥2

pi
≥ −γ + pi

ν−1 log |Ω∗|
piν

, (II.88)

for all i ≥ i∗∗. Therefore, from (II.87),

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) ≤ −αM∥∇ψpiΩ∗(xi)∥2

pi
, (II.89)

for all i ≥ i∗∗. Since by Lemma II.19,
∑∞

i=0 1/pi = +∞, it follows from (II.84) and

(II.89) that

ψpiΩ∗(xi) → −∞, as i→ ∞. (II.90)

Let x∗ be an accumulation point of {xi}∞i=0. That is, there exists an infinite subset

K ⊆ N0 such that xi→Kx∗. Based on (II.7), Lemma II.19, and continuity of ψΩ∗(·),

it follows that ψpiΩ∗(xi)→KψΩ∗(x∗), as i → ∞, which contradicts (II.90). Hence,

lim infi→∞ ∥∇ψpiΩ∗(xi)∥ = 0. Consequently, there exists an infinite subset K∗ ⊆ N0

and an x∗ ∈ Rd such that xi → x∗ and θpiΩ∗(xi) →K∗
0, as i → ∞, which implies

that lim supi→∞ θpiΩ∗(xi) ≥ 0. From Definition I.3, Theorem II.15, and the fact that

θΩ∗(·) is a nonpositive function, θΩ∗(x∗) = 0.

Theorem II.22. Suppose that Assumption II.4(i) holds. (i) If Algorithm II.3 con-

structs a bounded sequence {xi}∞i=0 ⊂ Rd, then there exists an accumulation point

x∗ ∈ Rd of the sequence {xi}∞i=0 that satisfies θ(x∗) = 0. (ii) If Algorithm II.3 con-

structs a finite sequence {xi}i
∗
i=0 ⊂ Rd, then Step 2b constructs an unbounded infinite

sequence {zi∗l′}−∞
l′=l with

ψ(zi∗l′−1) < ψ(zi∗l′) (II.91)

for all l′ ∈ {l, l − 1, l − 2, ...}, where l is the tentative Armijo stepsize computed in

Step 2a.

44

Proof. First, we consider (i). Let the set Ω∗ ⊆ Q be as in Lemma II.18, where

Ωi = Ω∗ for all i ≥ i∗. Based on Lemma II.21, there exists an accumulation point of

the sequence {xi}∞i=0, x
∗ ∈ Rd such that θΩ∗(x∗) = 0. The conclusion then follows by

similar arguments as in Theorem II.17.

We next consider (ii). Algorithm II.3 constructs a finite sequence only if it jams

in Step 2b. Then Substep 1 constructs an infinite sequence {zi∗l′}−∞
l′=l satisfying (II.91)

for all l′ ∈ {l, l − 1, l − 2, ...}. The infinite sequence is unbounded since hpiΩi
(xi) ̸= 0

as (II.91) cannot hold otherwise, and β ∈ (0, 1).

3. Complexity

Next, we consider the complexity in q for a fixed d ∈ N of Algorithms II.2 and

II.3 to achieve a near-optimal solution of (FMX). Suppose that all functions f j(·) are

active, i.e., Ωi = Q, near an optimal solution. If BpΩ(·) is given by (II.47), then the

main computational work in each iteration of Algorithms II.2 and II.3 is the calcu-

lation of ∇ψp(·), which takes O(q) arithmetic operations under Assumption II.9; see

the proof of Theorem II.10. If BpΩ(·) is given by (II.48), then the main computational

work is the calculation of (II.48) and hpΩ(x). Under Assumption II.9, it takes O(q)

arithmetic operations to compute µj
p(x), for all j ∈ Q, O(q) to compute ∇f j(x), for

all j ∈ Q, O(q) to sum
∑

j∈Ω µ
j
p(x)∇f j(x)∇f j(x)T , O(q) to sum

∑
j∈Q µ

j
p(x)∇f j(x),

and the other operations take O(1). In all, the number of arithmetic operations to

obtain BpΩ(x) is O(q). A direct method for solving a linear system of equations to

compute hpΩ(x) depends on d, but is constant in q. Hence, if BpΩ(·) is given by (II.48),

the computational work in each iteration of Algorithms II.2 and II.3 is O(q). It is

unclear how many iterations Algorithms II.2 and II.3 would need to achieve a near-

optimal solution as a function of q. However, since they may utilize Quasi-Newton

search directions and adaptive precision adjustment, there is reason to believe that

the number of iterations will be no larger than that of Algorithm II.1, which uses the

steepest descent direction and a fixed precision parameter. Thus, suppose that for

some tolerance t > 0, the number of iterations of Algorithms II.2 and II.3 to generate

45

{xi}ni=0, with the last iterate satisfying ψ(xn) − ψ∗ ≤ t, is no larger than O(log q),

as is the case for Algorithm II.1. Then the complexity of Algorithms II.2 and II.3 to

generate xn is no larger than O(q log q), which is the same as for Algorithm II.1.

E. NUMERICAL RESULTS

We present an empirical comparison of Algorithms II.2 and II.3 with algo-

rithms from the literature over a set of problem instances from Polak et al. (2003);

Zhou and Tits (1996) as well as randomly generated instances; see Appendix A. This

study appears to be the first systematic comparison of smoothing and SQP algorithms

for large-scale problems, with number of functions q up to two orders of magnitude

larger than previously reported. Specifically, we examine:

(i) PPP. Pshenichnyi-Pironneau-Polak min-max algorithm (Algorithm 2.4.1 in Po-
lak 1997).

(ii) ϵ-PPP. An active-set version of PPP as stated in Algorithm 2.4.34 in Polak
(1997); see also Polak (2008).

(iii) SQP-2QP. Algorithm 2.1 of Zhou and Tits (1996), an SQP algorithm with two
QPs.

(iv) SQP-1QP. Algorithm A in Zhu et al. (2009), a one-QP SQP algorithm.

(v) SMQN. Algorithm 3.2 in Polak et al. (2008), a smoothing Quasi-Newton algo-
rithm.

(vi) Algorithms II.2 and II.3 of the present chapter.

We refer to Appendix B for details about algorithm parameters. With the ex-

ception of PPP and SQP-1QP, the above algorithms incorporate active-set strategies

and, hence, appear especially promising for solving problem instances with large q.

We implement and run all algorithms in MATLAB version 7.7.0 (R2008b) (see Math-

works 2009) on a 3.73 GHz PC using Windows XP SP3, with 3 GB of RAM. All QPs

are solved using TOMLAB CPLEX version 7.0 (R7.0.0) (see Tomlab 2009) with the

Primal Simplex option, which preliminary studies indicate result in the smallest QP

46

run time. We also examined the LSSOL QP solver (see Gill, Hammarling, Murray,

Saunders, & Wright, 1986), but its run times appear inferior to that of CPLEX for

large-scale QPs arising in the present context.

Algorithm 2.1 of Zhou and Tits (1996) is implemented in the solver CFSQP

(Lawrence, Zhou, & Tits, 1997) and we have verified that our MATLAB implementa-

tion of that algorithm produces comparable results in terms of number of iterations

and run time as CFSQP. We do not directly compare with CFSQP as we find it more

valuable to compare different algorithms using the same implementation environment

(MATLAB) and the same QP solver (CPLEX).

For Algorithm II.3, unless otherwise stated, we use the Quasi-Newton direction

with BpΩ(x) as defined in (II.48), because preliminary test runs show that generally,

the alternate steepest descent direction with BpΩ(x) as defined in (II.47) produces

longer run times. We examine all problem instances from Polak et al. (2003); Zhou

and Tits (1996) except two that cannot be easily extended to large q. As the problem

instances with many variables in Polak et al. (2003); Zhou and Tits (1996) do not

allow us to adjust the number of functions, we create two additional sets of problem

instances; see Appendix A for details. We report run times to achieve a solution x

that satisfies

ψ(x)− ψtarget ≤ t, (II.92)

where ψtarget is a target value (see Table 17 of Appendix A) equal to the optimal

value (if known) or a slightly adjusted value from the optimal values reported in

Polak et al. (2003); Zhou and Tits (1996) for smaller q. We use t = 10−5. Although

this termination criteria is not possible for real-world problems, we find that it is the

most useful criterion in this study.

Before we can compare the run times of the various algorithms, we need to

conduct sensitivity analysis to determine a robust setting (one that produces the

fastest run times for majority of the problem instances) for the parameter ϵ (see

(II.46)) to use for the active-set strategies.

47

1. Selection of a Robust ϵ for Active-Set Algorithms

Of the algorithms compared, ϵ-PPP, SQP-2QP, SMQN, Algorithms II.2 and

II.3 implement some form of active-set strategies. The performance of these active-set

algorithms depend on the parameter ϵ, which defines an ϵ-active set at each iteration.

However, as ϵ is not used exactly the same way in the different algorithms, we do not

expect the robust ϵ setting to be the similar for the different algorithms.

For the sensitivity analysis, we use the same set of problem instances ProbC,

ProbG, and ProbL (see Appendix A) for all active-set algorithms. The three problem

instances have different problem dimensionality d, which we hope contribute a robust

setting for ϵ. We include the non-convex ProbG (see Table 17 of Appendix A) to

ensure that the chosen ϵ is robust for both convex and non-convex problems.

The number of objective functions for each test problem, q is set as high as

possible (in powers of 10), without encountering memory problems for any of the

algorithms. For each problem instance and active-set algorithm, we determine the

run times with ϵ = 1000, 100, ..., 10−20. We present a representative sample of the run

times, leaving out (i) those run times that do not change much when we decrease ϵ by

a factor of 10, and (ii) those run times that are significantly longer than the fastest

run time.

a. Selection of a Robust ϵ for ϵ-PPP

Table 1 indicates that the performance of the algorithm ϵ-PPP is sen-

sitive to ϵ, and there is no single value of ϵ that is consistently better for the three

problem instances considered. The word “local” indicates that the algorithm con-

verges to a locally optimal solution for the non-convex ProbG. The run times with

ϵ = 10−2 to ϵ = 10−4 seem to be consistently better than other settings, and we will

use ϵ = 10−3 for the algorithm comparison study.

b. Selection of a Robust ϵ for SQP-2QP

Table 2 indicates that the performance of the algorithm SQP-2QP is

relatively insensitive to different ϵ values. We use ϵ = 1 for the algorithm comparison,

48

ProbC ProbG ProbL
d 2 4 4× 102

q 105 105 102

ϵ = 1000 869.7 local 315.1
ϵ = 100 540.5 local 243.3
ϵ = 10 350.9 local 190.9
ϵ = 1 71.7 local 140.8
ϵ = 10−1 35.5 local 101.0
ϵ = 10−2 5.1 local 79.2
ϵ = 10−3 5.0 local 79.7
ϵ = 10−4 3.1 local 104.9
ϵ = 10−5 3.1 local 197.1
ϵ = 10−10 31.5 local 4246
ϵ = 10−15 > 7200 local > 7200
ϵ = 10−20 > 7200 local > 7200

Table 1. Run times based on ϵ for ϵ-PPP. The word “local” means that the algorithm
converges to a locally optimal solution that does not satisfy (II.92), which may occur
for non-convex problems.

ProbC ProbG ProbL
d 2 4 4× 102

q 105 105 102

ϵ = 1000 1.7 2.7 21.5
ϵ = 100 0.85 2.4 21.4
ϵ = 10 0.74 2.5 21.4
ϵ = 1 0.67 2.4 15.1
ϵ = 10−1 0.71 2.5 15.0
ϵ = 10−5 0.76 3.2 14.3
ϵ = 10−10 0.72 3.2 14.2
ϵ = 10−15 0.76 3.2 14.4
ϵ = 10−20 0.68 3.1 14.3

Table 2. Run times based on ϵ for SQP-2QP.

49

as it provides consistently fast run times as seen in Table 2, and it is also the proposed

value in Zhou and Tits (1996).

c. Selection of a Robust ϵ for SMQN and Algorithm II.2

Algorithm II.2 is very similar to SMQN, the only difference being the

schemes for precision-parameter adjustment. Due to their similarity, we conduct the

sensitivity analysis with only SMQN, but apply the resulting ϵ to both algorithms for

the algorithm comparison.

ProbC ProbG ProbL
d 2 4 4× 102

q 105 105 102

ϵ = 1000 152.6 105.2 584.8
ϵ = 100 152.5 105.5 571.3
ϵ = 10 153.0 103.6 845.3
ϵ = 1 140.0 116.5 547.8
ϵ = 10−1 112.0 108.2 153.2
ϵ = 10−5 83.9 216.3 113.9
ϵ = 10−10 11.8 31.2 113.9
ϵ = 10−15 12.2 29.8 114.1
ϵ = 10−20 12.6 25.3 114.0

Table 3. Run times based on ϵ for SMQN and Algorithm II.2.

Table 3 provides a clear indication that a small ϵ provides the fastest

run times for SMQN consistently. There is no recommended setting for the parameter

ϵ in Polak et al. (2008). We select ϵ = 10−20 for SMQN and Algorithm II.2 for the

algorithm comparison.

d. Selection of a Robust ϵ for Algorithm II.3

Table 4 indicates that the performance of Algorithm II.3 is sensitive to

the value of ϵ and there is not a single ϵ value that is optimal for the three problem

instances selected. Similar to SMQN and Algorithm II.2, we use ϵ = 10−20 for the

algorithm comparison.

50

ProbC ProbG ProbL
d 2 4 4× 102

q 105 105 102

ϵ = 1000 5.4 local 0.34
ϵ = 100 5.4 local 0.35
ϵ = 10 3.7 local 0.34
ϵ = 1 4.3 local 0.77
ϵ = 10−1 3.0 local 3.4
ϵ = 10−5 3.5 557.4 4.3
ϵ = 10−10 0.96 27.6 4.2
ϵ = 10−15 1.2 22.3 4.1
ϵ = 10−20 1.3 20.1 4.6

Table 4. Run times based on ϵ for Algorithm II.3. The word “local” means that the
algorithm converges to a locally optimal solution that does not satisfy (II.92), which
may occur for non-convex problems.

In view of the above sensitivity analyses, we use the following values of

ϵ to compare the various algorithms in the next section, ϵ = 10−3 for ϵ-PPP, ϵ = 1

for SQP-2QP, and ϵ = 10−20 for SMQN, Algorithms II.2 and II.3.

2. Comparison

In this subsection, we compare the algorithms over a set of problem instances

from Polak et al. (2003); Zhou and Tits (1996) as well as randomly generated in-

stances; see Appendix A.

a. Minimizing the Maximum of up to 100,000 Functions

Table 5 summarizes the run times (in seconds) of the various algorithms,

with Columns 2 and 3 giving the number of variables d and functions q, respectively.

Run times in boldface indicate that the particular algorithm has the shortest run

time for the specific problem instance. The numerical results in Table 5 indicate that

in most problem instances, the run times are shortest for SQP-2QP or Algorithm

II.3. Table 5 indicates that SQP-2QP is significantly more efficient than SQP-1QP for

problem instances ProbA-ProbG. This is due to the efficiency of the active-set strategy

51

in SQP-2QP, which is absent in SQP-1QP. However, for ProbJ-ProbM, SQP-1QP is

comparable to SQP-2QP. This is because at the optimal solution of ProbJ-ProbM,

all the functions are active. This causes the active-set strategy in SQP-2QP to lose

its effectiveness as the optimal solution is approached.

Table 5 indicates also that Algorithm II.2 is more efficient than SMQN

for most problem instances. As the only difference between the two algorithms lies

in their precision-parameter adjustment scheme, this highlights the sensitivity in the

performance of smoothing algorithms to the control of their precision parameters.

Table 5 also shows that Algorithm II.3 is more efficient than Algorithm II.2 and

SMQN for most problem instances.

Table 5 indicates that SQP-2QP is generally more efficient than Al-

gorithm II.3 for problem instances with small dimensionality, d ≤ 4 (specifically

ProbA-ProbG), and vice versa. This is consistent with the common observation that

SQP-type algorithms may be inefficient for problems with many variables; see for

example Zhou and Tits (1996).

Table 5 shows that some algorithms return locally optimal solutions for

some problem instances (labeled “local” in Table 5). In view of these results, there is

an indication that smoothing algorithms (SMQN, Algorithms II.2 and II.3) tend to

find global minima more frequently than PPP and SQP algorithms.

52

In
st
an

ce
d

q
P
P
P

ϵ-
P
P
P

S
Q
P
-2
Q
P

S
Q
P
-1
Q
P

S
M
Q
N

A
lg
o
II
.2

A
lg
o
II
.3

(ϵ
=

10
−
3
)

(ϵ
=

1)
(ϵ

=
10

−
2
0
)

(ϵ
=

10
−
2
0
)

(ϵ
=

10
−
2
0
)

P
ro
b
A

1
10
0,
00
0

17
.3

2.
5

0.
45

13
.7

0.
64

0.
41

0
.3
1

P
ro
b
B

1
10
0,
00
0

2.
5

0.
69

0
.0
6

13
1.
1

0.
31

0.
70

0.
45

P
ro
b
C

2
10
0,
00
0

15
.3

5.
0

0
.6
7

11
.9

12
.6

1.
9

1.
3

P
ro
b
D

2
10
0,
00
0

5.
0

7.
4

0
.2
1

9.
9

7.
2

1.
7

1.
5

P
ro
b
E

3
10
0,
00
0

19
.5

14
.5

0
.5
9

18
.3

8.
1

2.
2

2.
0

P
ro
b
F

3
10
0,
00
0

28
.7

18
.8

2.
3

24
.4

18
.2

2.
9

2
.1

P
ro
b
G

4
10
0,
00
0

lo
ca
l

lo
ca
l

2
.4

79
.1

25
.3

28
.7

20
.1

P
ro
b
H

4
10
0,
00
0

21
1.
8

96
8.
4

lo
ca
l

12
8.
9

36
.2

31
.5

2
3
.5

P
ro
b
I

6
10
0,
00
0

37
.7

lo
ca
l

lo
ca
l

3
1
.7

42
5.
2

51
2.
9

lo
ca
l

P
ro
b
J

1,
00
0

1,
00
0

*
*

14
58

11
61

**
22
12

4
6
5
.6

P
ro
b
K

2,
00
0

1,
00
0

*
*

**
84
04

**
10
62
0

2
2
6
5

P
ro
b
L

40
0

10
0

3
.6

79
.7

15
.1

14
.5

11
2.
0

17
.5

4.
6

P
ro
b
M

10
0

4,
95
0

7.
0

16
0.
3

2.
7

3.
6

4.
5

3.
6

2
.3

T
ab

le
5.

R
u
n
ti
m
es

(i
n
se
co
n
d
s)

fo
r
va
ri
ou

s
al
go
ri
th
m
s.

T
h
e
w
or
d
“l
o
ca
l”

m
ea
n
s
th
at

th
e
al
go
ri
th
m

co
n
ve
rg
es

to
a

lo
ca
ll
y
op

ti
m
al

so
lu
ti
on

th
at

d
o
es

n
ot

sa
ti
sf
y
(I
I.
92
),
w
h
ic
h
m
ay

o
cc
u
r
fo
r
n
on

-c
on

ve
x
p
ro
b
le
m
s.

A
n
as
te
ri
sk

*
in
d
ic
at
es

th
at

th
e
al
go
ri
th
m

d
o
es

n
ot

sa
ti
sf
y
(I
I.
92
)
af
te
r
si
x
h
ou

rs
,
an

d
ψ
(x
)
−
ψ

ta
rg
et
>

10
−
4
at

te
rm

in
at
io
n
,
w
h
il
e
**

in
d
ic
at
es

ψ
(x
)
−
ψ

ta
rg
et
>

10
−
3
at

te
rm

in
at
io
n
.

53

b. Minimizing the Maximum of up to 1,000,000 Func-
tions

Table 6 presents similar results as in Table 5, but for larger q. We do

not present results for PPP and SQP-1QP as the required QPs exceed the memory

limit. The comprehensive sensitivity studies for ϵ show significant improvement for

Algorithm II.3 for ProbJ-ProbM if a large ϵ is used. Hence, we include the results for

Algorithm II.3 with ϵ = 1000 in Table 6. This ϵ-value means that there is effectively

no active-set strategy. Sensitivity tests conducted for the other algorithms with a

larger ϵ show no improvement in their run times.

The observations from Table 6 are similar to those for Table 5. Table

6 indicates that Algorithm II.3 with ϵ = 1000 is efficient for ProbJ-ProbM, which

has large d and a significant number of functions active at the optimal solution. For

completeness, the run times for Algorithm II.3 with ϵ = 1000 for ProbJ-ProbM in

Table 5 are 2.8, 14.3, 0.36 and 3.0 seconds respectively, while the run times for the

other problem instances are longer than Algorithm II.3 with ϵ = 10−20.

The results in Tables 5 and 6 indicate that among the algorithms con-

sidered, SQP-2QP and Algorithm II.3 are the most efficient algorithms for minimax

problems with a large number of functions. The run times for ProbJ-ProbM indi-

cate that SQP-2QP is less efficient for problem instances with a significant number

of the functions that is nearly active at the solution, as the active-set strategy loses

its effectiveness.

54

In
st
an

ce
d

q
ϵ-
P
P
P

S
Q
P
-2
Q
P

S
M
Q
N

A
lg
o
II
.2

A
lg
o
II
.3

A
lg
o
II
.3

(ϵ
=

10
−
3
)

(ϵ
=

1)
(ϵ

=
10

−
2
0
)

(ϵ
=

10
−
2
0
)

(ϵ
=

10
00
)

(ϵ
=

10
−
2
0
)

P
ro
b
A

1
1,
00
0,
00
0

22
.5

4.
6

4.
4

2
.7

8.
6

3.
1

P
ro
b
B

1
1,
00
0,
00
0

6.
1

0
.6
1

2.
7

4.
8

2.
5

3.
0

P
ro
b
C

2
1,
00
0,
00
0

59
.4

7
.2

13
1.
0

15
.0

61
.9

13
.1

P
ro
b
D

2
1,
00
0,
00
0

79
.3

2
.2

75
.3

12
.3

47
.5

13
.4

P
ro
b
E

3
1,
00
0,
00
0

24
5.
0

5
.5

93
.0

12
.1

74
.5

17
.5

P
ro
b
F

3
1,
00
0,
00
0

33
2.
9

22
.9

18
5.
9

21
.7

74
.1

1
8
.1

P
ro
b
G

4
1,
00
0,
00
0

lo
ca
l

2
7
.2

25
7.
8

22
0.
1

12
22
7

16
9.
5

P
ro
b
H

4
1,
00
0,
00
0

12
32
2

lo
ca
l

36
2.
8

24
0.
4

41
57

2
3
8
.4

P
ro
b
I

6
1,
00
0,
00
0

lo
ca
l

lo
ca
l

42
62

40
16

3
7
1
7

lo
ca
l

P
ro
b
J

4,
00
0

4,
00
0

**
**

**
**

9
2
.8

**
P
ro
b
K

4,
00
0

2,
00
0

**
**

**
**

9
1
.8

**
P
ro
b
L

4,
00
0

1,
00
0

*
**

**
**

1
0
6
.6

13
27
3

P
ro
b
M

20
0

19
,9
00

*
24
.7

66
.1

91
7.
3

8.
6

2
.5

T
ab

le
6.

S
im

il
ar

re
su
lt
s
as

in
T
ab

le
5,

b
u
t
w
it
h
la
rg
er
q.

T
h
e
w
or
d
“l
o
ca
l”

m
ea
n
s
th
at

th
e
al
go
ri
th
m

co
n
ve
rg
es

to
a

lo
ca
ll
y
op

ti
m
al

so
lu
ti
on

th
at

d
o
es

n
ot

sa
ti
sf
y
(I
I.
92
),
w
h
ic
h
m
ay

o
cc
u
r
fo
r
n
on

-c
on

ve
x
p
ro
b
le
m
s.

A
n
as
te
ri
sk

*
in
d
ic
at
es

th
at

th
e
al
go
ri
th
m

d
o
es

n
ot

sa
ti
sf
y
(I
I.
92
)
af
te
r
si
x
h
ou

rs
,
an

d
ψ
(x
)
−
ψ

ta
rg
et
>

10
−
4
at

te
rm

in
at
io
n
,
w
h
il
e
**

in
d
ic
at
es

ψ
(x
)
−
ψ

ta
rg
et
>

0.
01

at
te
rm

in
at
io
n
.

55

c. Randomly Generated Problem Instances

The problem instances from the literature examined in Tables 5 and

6 include either cases with few functions ϵ-active at an optimal solution (ProbA-

ProbI) or cases with all functions ϵ-active (ProbJ-ProbM). We also examine randomly

generated problem instances with an intermediate number of functions ϵ-active at

the optimal solution; see ProbN in Table 17 of Appendix A. The optimal values are

unknown in this case but the target values given in Table 17 of Appendix A appear

to be close to the global minima.

d q SQP-2QP Algo II.3 SD Algo II.3 QN
(ϵ = 1) (ϵ = 1000) (ϵ = 1000)

10 10,000 0.42 0.64 0.62

100 10,000 0.82 0.48 0.54

1,000 10,000 124.9 0.38 4.8

10 100,000 4.1 3.8 4.2

100 100,000 11.5 3.8 4.1

1,000 100,000 mem 4.3 9.7

1,000 1,000,000 mem 37.2 42.5

1,000 10,000,000 mem 421.8 492.5

10,000 100,000 mem 6.3 mem

Table 7. Run times (in seconds) of algorithms on problem instance ProbN. “SD” and
“QN” indicate that Algorithm II.3 uses BpΩ(·) given by (II.47) and (II.48), respec-
tively. The word “mem” indicates that the algorithm terminates due to insufficient
memory.

Table 7 presents the run times for Algorithm II.3 and SQP-2QP on

ProbN. As the problem instances are relatively well-conditioned, Algorithm II.3 with

BpΩ(·) given by (II.47), i.e., a steepest descent (SD) direction, may perform well and

is included in the table. The parameter ϵ for Algorithm II.3 is set to 1000 for this

set of problem instances, as preliminary test runs show that it is consistently better

than other choices. Table 7 indicates that SQP-2QP is less efficient than Algorithm

II.3 for problem instances with large d, and where there is a significant number of

functions ϵ-active at the optimal solution. The last row in Table 7 shows that for

56

problem instances with d ≥ 10, 000, the storage of the d × d HpΩ(·) matrix for both

SQP-2QP and Algorithm II.3, with BpΩ(·) given by (II.48), causes both algorithms

to terminate due to memory limitations. Thus, Algorithm II.3, with BpΩ(·) given by

(II.47), which does not have any matrix to store, may be a reasonable alternative

when d is large.

F. CONCLUSIONS FOR FINITE MINIMAX

This chapter focuses on minimizing the maximum of many functions and

presents complexity and rate-of-convergence analysis of smoothing algorithms for such

problems. We find that smoothing algorithms might only have sublinear rates of con-

vergence, but their complexity in the number of functions is competitive with other

algorithms due to small computational work per iteration. We present two smoothing

algorithms with novel precision-adjustment schemes and carry out a comprehensive

numerical comparison with other algorithms from the literature. We find that the

proposed algorithms are more efficient than a recent smoothing algorithm from the

literature, due to the more efficient precision-adjustment schemes implemented. The

proposed algorithms are competitive with SQP algorithms, and especially efficient for

problem instances with many variables, or where a significant number of functions

are nearly active at stationary points. The numerical results indicate that smoothing

with first-order gradient methods is likely the only viable approach to solve finite

minimax problems with many functions and variables due to memory issues.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

III. SEMI-INFINITE MINIMAX PROBLEM

A. INTRODUCTION

In this chapter, we consider semi-infinite minimax problems of the form

(SMX) min
x∈Rd

ψ(x), (III.1)

where ψ : Rd → R is defined by

ψ(x)
△
= max

y∈Y
ϕ(x, y), (III.2)

Y is a compact infinite subset of Rm, ϕ : Rd × Rm → R, d,m ∈ N, and ϕ(·, ·) is

continuous and sufficiently smooth on Rd × Y as specified below. Note that if Y is

a finite set instead, we have the finite minimax problem (FMX) from Chapter II.

The notation in each chapter is self-contained. Hence, we here as well as below reuse

some symbols from Chapter II in definitions of new quantities. The data m, i.e., the

dimension of y, is as we see below a key quantity and we refer to as the uncertainty

dimension.

In general, (SMX) is used by decision makers to determine the optimal re-

sponse to the worst-case scenario. (SMX) arises in applications such as finance

(Rustem & Howe, 2002), electrical circuit theory (Demyanov & Malozemov, 1974),

and policy optimization (Becker, Dwolatzky, Karakitsos, & Rustem, 1986). Solving

(SMX) is difficult for two reasons: (i) for any x ∈ Rd, ψ(x) may not be computable

in finite time because of the global maximization involved, and (ii) ψ(·) may not be

differentiable everywhere.

Several methods have been proposed to solve (SMX); see Rustem and Howe

(2002, Chapter 2) for a survey of semi-infinite minimax algorithms. A key method

for solving (SMX) is the use of semi-infinite programming (SIP) methods. (SMX)

can be reformulated into the SIP

(SMX′) min
(x,z)∈Rd+1

{z | ϕ(x, y)− z ≤ 0 ∀y ∈ Y }, (III.3)

59

involving an infinite number of constraints, which can then be solved by any SIP algo-

rithm. SIPs are usually solved by solving a sequence of finite problems, i.e., problems

with a finite number of constraints. Depending on how the finite problems are cre-

ated, we can generally group SIP algorithms into three classes: exchange algorithms,

local reduction algorithms, and discretization algorithms; see Lopez and Still (2007);

Hettich and Kortanek (1993); Reemtsen and Gorner (1998) for surveys on the theory,

applications and algorithms of SIP.

In exchange algorithms (Kortanek & No, 1993), at each iterate (xi, zi) ∈

Rd+1, i ∈ N, new constraints ϕ(x, ŷi) − z ≤ 0 corresponding to a maximizer ŷi ∈

argmaxy∈Y ϕ(xi, y) are added to the finite problem, and existing constraints removed,

i.e., an exchange of constraints occurs. In local reduction algorithms (Price & Coope,

1990), under certain regularity assumptions, the SIP can be converted locally into a

finite problem.

Discretization algorithms are one of the more popular classes of algorithms

for solving SIPs due to their simplicity. They create finite problems by considering

a finite discretized subset of Y . To achieve the required solution tolerance, most

discretization algorithms implement some kind of adaptive discretization refinement

rule to gradually increase the level of discretization, rather than fix the discretization

at a high level right from the start. In this chapter, we refer to those algorithms

that are applied to solve the individual discretized problems as algorithm maps, to

differentiate them from the overall discretization algorithm that usually includes some

adaptive discretization refinement rule. At each stage of the algorithm, the level

of discretization is fixed and an algorithm map is used to solve the finite problem

approximately. The approximate solution is then usually used to warm-start the

next stage. We refer to Hettich (1986); Reemtsen (1991); Polak and He (1992); Polak

(1997) for examples of discretization algorithms.

There are also algorithms that directly address (SMX) without the reformu-

lation to SIP. The algorithms in Chaney (1982); Klessig and Polak (1973) assume

60

that the maximum in (III.2) occurs at a unique point ŷ(x), for all x ∈ Rd, which en-

sures that ψ(·) is differentiable. Smooth optimization methods, such as the method

of centers algorithm in Chaney (1982) and a first-order, feasible directions method

in Klessig and Polak (1973), are then used to minimize the smooth ϕ(·, ŷ(·)). The

conceptual algorithm in Panin (1981) and an implementable version in Kiwiel (1987)

use a convex piecewise linear approximation of ψ(·) to solve (SMX). As (SMX) be-

longs to the general class of nonsmooth problems, nonsmooth optimization algorithms

such as subgradient and bundle algorithms (Rustem & Howe, 2002) can be used as

well. Subgradient algorithms determine the descent direction by computing at least

one subgradient at each iterate, while bundle algorithms use subgradient information

over several successive iterates to determine the descent direction. A discretization

algorithm that does not involve the reformulation into a SIP is proposed in Demyanov

and Malozemov (1971). The algorithm solves an infinite sequence of finite minimax

problems of the form

min
x∈Rd

max
y∈YN

ϕ(x, y), (III.4)

where YN , N ∈ N, are finite discretized subsets of Y . This approach is fundamentally

the same as converting (SMX) into a SIP and then applying discretization methods.

In this chapter, we propose a novel way of expressing rate of convergence, in

terms of computational work instead of the typical number of iterations. We first

discuss the inadequacy of the typical rate of convergence. We consider two adaptive

discretization algorithms (Polak & He, 1992; Polak, Mayne, & Higgins, 1992) to solve

(SMX). Polak and He (1992) propose a set of discretization refinement rules, which

ensures that their adaptive discretization algorithm generates sequences that con-

verge to a solution of the original SIP problem at the same linear rate with the same

estimated rate constant as that of the linearly convergent algorithm map used in the

discretization algorithm. Another similar study that investigates this rate-preserving

idea is found in Polak et al. (1992) for a semi-infinite minimax algorithm, which uses

an extension to Newton’s method as the algorithm map. Polak et al. (1992) state

61

that the rate of convergence for their adaptive discretization algorithm is superlinear.

Without further information, a user probably will select the superlinearly convergent

algorithm to solve (SMX). However, for the superlinearly convergent algorithm, be-

cause the level of discretization needs to increase rapidly to achieve the superlinear

rate, the computational work between iterates increases rapidly. Thus, the compu-

tational time may not be well-correlated to the superlinear rate of convergence since

the typical rate of convergence does not consider computational work.

To our knowledge, there has been no rate-of-convergence result that considers

computational work for discretization algorithms for SIP and (SMX). That said, not

all rate-of-convergence results are in terms of the number of iterations. Still (2001)

studies how the rate of convergence for SIP discretization algorithms depends on the

level of discretization and whether the discretization includes boundary points of Y

in a specific way. Shapiro (2009) determines the rate of convergence of an ϵ-optimal

solution of the discretized problem to the set of optimal solutions of the SIP problem,

as a function of the level of discretization.

In our proposed way of expressing rate of convergence, we relate computational

work to the number of iterations as well as to the level of discretization by making

some computational work assumptions. This relation allows us to determine the rate

of decay of a bound on the error between the iterates generated from the discretized

problems and the optimal solution of (SMX) as a function of computational work,

which we refer to as rate of decay of error bound in the rest of the chapter. We

use this new way to develop rate-of-convergence results for various fixed and adaptive

discretization algorithms for (SMX) and compare them against the rate of convergence

of an ϵ-subgradient algorithm. We show that the new way allows a fairer comparison

of the various algorithms than the typical rate of convergence. We also conduct

numerical studies to validate the theoretical results we obtain.

The next section describes the discretization approach and determines the

rate of decay of error bound for discretization algorithms using algorithm maps with

62

varying rate of convergence. Section C determines the rate of decay of error bound

for an ϵ-subgradient algorithm and compares it against the discretization algorithms.

Section D contains numerical results.

B. EFFICIENCY OF DISCRETIZATION ALGORITHM

We start this section by describing the discretization approach for (SMX) and

include for completeness some known results that we use in later subsections.

1. Discretization

The discretization approach involves approximating Y by a finite subset YN ⊂

Y , where |YN | = N (| · | denotes the cardinality operator), and approximately solving

the resulting finite minimax problem

(SMXN) min
x∈Rd

ψN(x), (III.5)

where ψN : Rd → R, N ∈ N, is defined by

ψN(x)
△
= max

y∈YN

ϕ(x, y). (III.6)

(SMXN) can be solved using any finite minimax algorithms, such as those in Chapter

II. In the remainder of this chapter, we refer to elements of YN as grid points. When

they exist, we denote the optimal solutions of (SMX) and (SMXN) by x∗ and x∗N ,

respectively, and the corresponding optimal values by ψ∗ and ψ∗
N . We next state some

properties of ψ(·) and ψN(·).

Proposition III.1. The following facts hold:

(i) For all x ∈ Rd and N ∈ N, ψN(x) ≤ ψ(x).

(ii) Suppose that ϕ(·, ·) is continuous on Rd×Y . Then ψ(·) and ψN(·) are continuous
for any N ∈ N on Rd.

(iii) For all N ∈ N,
ψ∗
N ≤ ψ∗. (III.7)

63

Proof. The conclusion (i) follows directly from the definitions of ψ(·) and ψN(·), and

the fact that YN ⊂ Y . Part (ii) follows, for example, from pp. 51 and 187 of Demyanov

and Malozemov (1974). For part (iii), by definition of x∗N , ψN(x
∗
N) ≤ ψN(x) for all

x ∈ Rd (which includes x∗), thus, based on part (i),

ψ∗
N

△
= ψN(x

∗
N) ≤ ψN(x

∗) ≤ ψ(x∗)
△
= ψ∗. (III.8)

In this section, we focus on the following basic fixed discretization algorithm,

for which we develop a series of rate of decay of error bound results.

Algorithm III.1. Fixed Discretization Algorithm

Data: x0 ∈ Rd.

Parameters: Discretization parameter N ∈ N and parameters required for the al-

gorithm map.

Step 1. Generate a sequence {xi}∞i=0 by applying an algorithm map to (SMXN).

We need the following assumptions for the rate of decay of error bound anal-

ysis. The operator ∥ · ∥ denotes the Euclidean norm.

Assumption III.2. The functions ϕ(x, ·), x ∈ Rd, are uniformly Lipschitz continuous

in y, i.e., there exists a constant L <∞ such that

|ϕ(x, y)− ϕ(x, y′)| ≤ L∥y − y′∥ (III.9)

for all x ∈ Rd and y, y′ ∈ Rm.

We require an assumption on the discretization scheme, which dictates how

YN is generated from Y given a N ∈ N. We assume that the same discretization

scheme is used throughout this chapter for the various algorithms.

Assumption III.3. There exists a N1 ∈ N, a discretization scheme defined for all

N ∈ N, N ≥ N1, and a monotonically decreasing function ∆m : N → R, where m is

the dimensionality of Y and ∆m(N) → 0 as N → ∞, such that

0 ≤ ψ(x)− ψN(x) ≤ ∆m(N) (III.10)

64

for all x ∈ Rd and N ∈ N, N ≥ N1. In addition, there exists a L′ < ∞ such that the

discretization error ∆m(N) can be expressed as

∆m(N)
△
= L′

√
m

N1/m
(III.11)

for all N ∈ N, N ≥ N1,m ∈ N.

Under Assumption III.2, Assumption III.3 holds for example when Y is the

unit cube [0, 1]m, and YN , N > 2m, is the uniform grid ImN defined in each of m

dimensions by

IN
△
=

{
0,

1

⌊N1/m⌋ − 1
,

2

⌊N1/m⌋ − 1
, ..., 1

}
(III.12)

and ⌊·⌋ denotes the floor function.

There are ⌊N1/m⌋ grid points in each of the m dimensions of Y , for a total of

⌊N1/m⌋m grid points. Thus, each grid element is a cube with length 1
⌊N1/m⌋−1

for each

edge of the grid element.

To continue the discussion, we need a way to quantify the “distance” between

two sets. We use Hausdorff distance for this purpose. The Hausdorff distance between

Y and YN is defined as

dist(Y, YN)
△
= max

y∈Y
min
y′∈YN

∥y′ − y∥. (III.13)

The Hausdorff distance between Y and YN is the maximum distance between any

point y ∈ Y and its nearest grid point in YN .

For the unit cube example, the Hausdorff distance between Y and YN is then

the distance from the center to a corner of the grid element, which, based on the

Euclidean distance of two points in m-dimensional space, is

dist(Y, YN) =

√
m

2(⌊N1/m⌋ − 1)
. (III.14)

Let ŷ ∈ Ŷ (x)
△
= argmaxy∈Y ϕ(x, y), and y1 ∈ YN be the nearest grid point to

ŷ. Based on the definition of the Hausdorff distance,

∥y1 − ŷ∥ ≤
√
m

2(⌊N1/m⌋ − 1)
. (III.15)

65

Under Assumption III.2, there exists a constant L <∞ such that

ϕ(x, ŷ)− ϕ(x, y1) ≤ L∥y1 − ŷ∥. (III.16)

Let ŶN(x)
△
= argmaxy∈YN

ϕ(x, y) and y2 ∈ ŶN(x). Thus, ϕ(x, y2) ≥ ϕ(x, y1) and

ϕ(x, ŷ)− ϕ(x, y2) ≤ ϕ(x, ŷ)− ϕ(x, y1). (III.17)

Since ψ(x) = ϕ(x, ŷ) and ψN(x) = ϕ(x, y2) by definition, for N > 2m,

0 ≤ ψ(x)− ψN(x) ≤ L

√
m

2(⌊N1/m⌋ − 1)
≤ L

√
m

2(N1/m − 2)
. (III.18)

There exists a N1 ∈ N such that

L

√
m

2(N1/m − 2)
≤ L

√
m

N1/m
(III.19)

for all N ≥ N1. This completes the verification that Assumption III.3 holds for the

unit cube with a uniform grid.

We need the following strong convexity assumption, which is standard for

rate-of-convergence analysis; see for example Polak et al. (1992).

Assumption III.4. The function ϕ(·, y), for all y ∈ Y , is twice continuously differ-

entiable, and there exists an a ∈ (0,∞) such that

a∥z∥2 ≤ ⟨z,∇2
xxϕ(x, y)z⟩, (III.20)

for all x, z ∈ Rd, and y ∈ Y .

In the following subsections, we derive the rate of decay of error bounds of fixed

(Algorithm III.1) and adaptive (Algorithm III.2) discretization algorithms to solve

(SMX) in terms of computational work. Hence, we need to define precisely what we

mean by an error bound for the various algorithms. For fixed discretization algorithms

(Algorithm III.1), we denote the nth iterate of a fixed discretization algorithm based on

discretization parameter N by xNn . Suppose that a computational budget b ∈ (0,∞)

66

is allocated to solve (SMX), and the computational work required to run nb ∈ N

iterations of a fixed discretization algorithm on (SMXNb
), Nb ∈ N, is no larger than b.

We refer to the quantity ψ
(
xNb
nb

)
−ψ∗ as the error. An upper bound on this quantity

is referred to as an error bound. Obviously, there are many possible error bounds.

We will define several specific error bounds for analysis.

For the rate of decay of error bound analyses in this section, we consider a fixed

discretization algorithm, Algorithm III.1, with an ideal algorithm map that solves

(SMXNb
), Nb ∈ N, exactly in one iteration; we consider an adaptive discretization

algorithm, Algorithm III.2, and we consider Algorithm III.1 with algorithm maps

with quadratic, linear, sublinear rate of convergence, as well as a specific case of a

smoothing algorithm.

We need the following assumption on computational work and budget for the

rate analysis.

Assumption III.5. There exist σ ∈ (0,∞) and ν ∈ [1,∞) such that the computa-

tional work required in each iteration of the algorithm map in solving (SMXN) is no

larger than σN ν for all N ∈ N.

The preceding assumption holds with ν = 1 for the two smoothing algorithms

proposed in Chapter II, and holds with ν = 3 for the SQP and PPP algorithms

discussed in Chapter II. Suppose that the assumption holds for the algorithm map

under consideration and a computational budget of b ∈ N is allocated to Algorithm

III.1, to run nb iterations of the algorithm map on (SMXNb
). Then Nb and nb must

be picked such that

σN ν
b nb ≤ b. (III.21)

In the upcoming analyses, we see that the error bounds for the various algo-

rithms often have two components. The first component is the error of not achieving

the optimal solution of the discretized (SMXNb
), which decreases monotonically as

the number of iterations nb increase. The second component of the error bound is due

67

to the discretization error ∆m(Nb), and it decreases monotonically as Nb increases.

From this point onwards, we ignore integrality of Nb and nb to simplify analysis, since

it will not affect the subsequent rate analysis as our focus is on asymptotic rate of

decay of error bounds, when Nb and nb → ∞. Since Nb and nb are constrained by the

inequality in (III.21), for any N1 and n1 that satisfy (III.21) with strict inequality,

there must exist a N2 ≥ N1 and a n2 ≥ n1 that satisfy (III.21) with equality, i.e.,

σNν
b nb = b, (III.22)

which produces a smaller error bound. Thus, we use (III.22) instead of (III.21) for

subsequent analysis.

Let {Nb}b∈N and {nb}b∈N be sequences that satisfy (III.22) for all b ∈ N. We

define {(Nb, nb)}b∈N as a candidate selection. Suppose that a particular algorithm

has error bound eb, b ∈ N. Obviously, there are many candidate selections that

make {eb}b∈N converge to zero. However, some candidate selections result in faster

rates than others, and we want to find these selections. We note that the topic of

determining algorithm parameter values to optimize algorithm efficiency has been

addressed in the area of simulation optimization (Pasupathy, 2010; Lee & Glynn,

2003).

We first consider the rate of decay of error bound eb for an ideal algorithm

map, which solves (SMXNb
) exactly in one iteration for any Nb ∈ N.

2. Ideal Algorithm Map

Suppose that Assumptions III.3 and III.5 hold. Suppose also that a compu-

tational budget b ∈ N is allocated to Algorithm III.1 with an ideal algorithm map to

solve (SMXNb
). Since (SMXNb

) is solved exactly in one iteration, ψNb
(xNb

1)−ψ∗
Nb

= 0.

Based on Proposition III.1(iii) and (III.10),

ψ(xNb
1)− ψ∗ ≤ ψNb

(xNb
1) + ∆m(Nb)− ψ∗

Nb
= ∆m(Nb) = L′

√
m

N
1/m
b

, (III.23)

68

where L′ is as in Assumption III.3. We define

eidealb

△
=
L′√m
N

1/m
b

. (III.24)

Theorem III.6. Suppose that Assumptions III.3 and III.5 hold. Suppose also that

a computational budget b ∈ N is allocated to Algorithm III.1 with an ideal algorithm

map to solve (SMXNb
). Then the error bound

eidealb =
L′√mσ1/mν

b1/mν
(III.25)

for all b ∈ N, where L′ is as in Assumption III.3, and σ and ν are as in Assumption

III.5.

Proof. Since an ideal algorithm map is used, nb = 1 for all b ∈ N, and from (III.22),

Nb = (b/σ)1/ν . The conclusion follows by substituting Nb into (III.24).

The result above states that eidealb decays at an asymptotic sublinear rate of

b−1/mν as b → ∞. Since the ideal algorithm map solves the discretized problems ex-

actly (in one iteration), the rate-of-decay result for eidealb determines the rate at which

the error between the function values at the solutions of the discretized problems and

the function value at the solution of the semi-infinite problem decays, as the level

of discretization increases. Similarly, the rate-of-convergence results in Still (2001)

and Shapiro (2009) determine the rate at which the error between the solutions of

the discretized problems and the solution of the semi-infinite problem decays, as the

level of discretization increases. Thus the rate-of-decay result for eidealb is related to

the rate-of-convergence results in Still (2001) and Shapiro (2009).

3. Adaptive Discretization Algorithm

The preceding result for fixed discretization can be generalized for a potentially

more efficient adaptive discretization algorithm as follows. For the following adaptive

discretization algorithm, we adopt a different notation (from the fixed discretization

algorithm) for the iterates, specifically, we denote the jth iterate at the ith stage by

xi,j.

69

Algorithm III.2. Adaptive Discretization Algorithm

Data: x0 ∈ Rd.

Parameters: Number of stages s ∈ N, discretization parameters {Ni}si=1, Ni ∈ N,

number of iterations in the stages {ni}si=1, ni ∈ N, and parameters required for the

algorithm map.

Step 1. Set i = 1.

Step 2. If i > 1, warm-start from the last iterate of the previous stage by setting

xi,1 = xi−1,ni−1
. Else, set xi,1 = x0.

Step 3. Generate a sequence {xi,j}ni
j=1 by applying a finite minimax algorithm map

to (SMXNi
).

Step 4. If i < s, replace i by i+ 1, and go to Step 2. Else, end.

Suppose that a computational budget b ∈ N is allocated to Algorithm III.2

with an algorithm map with an arbitrary rate of convergence to solve (SMX). Suppose

also that Assumptions III.3 and III.5 hold.

Based on Proposition III.1(iii) and (III.10),

ψ(xs,ns)− ψ∗ ≤ ψNs(xs,ns) + ∆m(Ns)− ψ∗
Ns
. (III.26)

We define

eadaptiveb

△
= ψNs(xs,ns) + ∆m(Ns)− ψ∗

Ns
. (III.27)

Proposition III.7. The error bound

eadaptiveb ≥ L′√mσ1/mν

b1/mν
(III.28)

for all b ∈ N, where L′ is as in Assumption III.3, and σ and ν are as in Assumption

III.5.

Proof. The parameters for Algorithm III.2, s ∈ N, {Ni}si=1, Ni ∈ N, and {ni}si=1, ni ∈

N satisfy

σ (N ν
1 n1 +Nν

2 n2 + ...+N ν
s ns) = b. (III.29)

70

This implies that σN ν
s ≤ b, and thus,

eadaptiveb = ψNs(xs,ns) + ∆m(Ns)− ψ∗
Ns

≥ ∆m(Ns) ≥
L′√mσ1/mν

b1/mν
, (III.30)

based on (III.11) and the assumption that ∆m(·) is a monotonically decreasing func-

tion.

The result above indicates that the eadaptiveb for Algorithm III.2 with any al-

gorithm map of any convergence rate, asymptotically decays with a rate no faster

than b−1/mν , as b→ ∞. In the following subsections, we show that this optimal rate

of b−1/mν can be achieved using the fixed-discretization Algorithm III.1 with certain

algorithm maps.

We say that an algorithm map converges uniformly when applied to (SMXN),

N ∈ N, if the respective constants c and n1 in Section I.D.2 do not depend on N .

4. Quadratically Convergent Algorithm Map

We obtain an error bound for Algorithm III.1 with a uniform quadratically

convergent algorithm map in the next lemma. We refer to Section I.D for definitions

of the various rates of convergence and uniform convergence.

Lemma III.8. Suppose that Assumptions III.3 and III.4 hold. Suppose also that

Algorithm III.1 with a uniform quadratically convergent algorithm map is used to

solve (SMX), i.e., there exist n1 ∈ N0, n1 <∞, and c1 ∈ (0,∞) such that

ψN(x
N
n+1)− ψ∗

N

[ψN(xNn)− ψ∗
N]

2 ≤ c1, (III.31)

for all n ≥ n1. Then there exist c, κ <∞ such that for all n ≥ n1 and N ∈ N,

ψ(xNn)− ψ∗ ≤ c2
n

κ+∆m(N). (III.32)

Proof. Based on Proposition III.1(iii), (III.10), and (III.31),

ψ(xNn)− ψ∗ ≤ ψN(x
N
n) + ∆m(N)− ψ∗

N

≤ c2
n−n1−1

1 [ψN(x
N
n1
)− ψ∗

N]
2n−n1 +∆m(N). (III.33)

71

From (III.10), −ψ∗
N ≤ −ψ(x∗N) + ∆m(N). Based on Assumption III.3, ∆m(N) is a

monotonically decreasing function, thus ∆m(N) ≤ ∆m(N1) for all N ∈ N, N ≥ N1.

Since ψ(x∗N) ≥ ψ(x∗) by definition,

c2
n−n1−1

1 [ψN(x
N
n1
)− ψ∗

N]
2n−n1

≤
[
c1
(
ψ(xNn1

)− ψ∗ +∆m(N1)
)]2n [c1 (ψ(xNn1

)− ψ∗ +∆m(N1)
)]2−n1

c1
,(III.34)

where N1 is as in Assumption III.3. Above we use the fact that for uniform conver-

gence, n1 is independent of N .

Under Assumption III.4, xNn1
is bounded for any n1 ∈ N and N ∈ N, N ≥ N1.

Since ψ(·) is continuous, ψ(xNn1
) is bounded for any n1 ∈ N andN ∈ N, N ≥ N1. Based

on Assumption III.4, ψ∗ is finite. As N1 ∈ N, ∆m(N1) < ∞ based on Assumption

III.3 and (III.11). Finally, c1 and n1 are independent of N based on the assumption

of uniform convergence, thus c and κ <∞.

From (III.32), we define the error bound for Algorithm III.1 with a quadrati-

cally convergent algorithm map as

equadb

△
= c2

nbκ+∆m(Nb). (III.35)

The next result states that if we choose the candidate selections in a certain

way, then a fixed discretization algorithm with a quadratically convergent algorithm

map can achieve the same optimal asymptotic rate of decay of error bound as Algo-

rithm III.2.

We use log(·) to denote the natural logarithm.

Theorem III.9. Suppose that Assumptions III.3, III.4, and III.5 hold. Suppose also

that a computational budget b ∈ N is allocated to Algorithm III.1 with a uniform

quadratically convergent algorithm map with rate of convergence given by (III.31) to

solve (SMX). If

Nb =

(
b log 2

σ[log log(b/σ)− log(−mν log c)]

)1/ν

(III.36)

72

and

nb =
log log(b/σ)− log(−mν log c)

log 2
(III.37)

for all b ∈ N, then (III.22) is satisfied and

lim
b→∞

log equadb

log b
= − 1

mν
, (III.38)

where m ∈ N is the uncertainty dimension and ν is as defined in Assumption III.5.

Proof. From (III.11), (III.22), and (III.32),

log equadb = log
(
exp

[
log κ+ 2b/(σN

ν
b) log c

]
+ exp

[
logL′√m− log(N

1/m
b)

])
= log

(
exp

[
log κ+ 2[log log(b/σ)−log(−mν log c)]/ log 2 log c

]
+ exp

[
logL′√m− 1

mν
log

(
b log 2

σ[log log(b/σ)− log(−mν log c)]

)])
= log

(
exp [log κ+ (log c) exp[log log(b/σ)− log(−mν log c)]]

+ exp

[
logL′√m− 1

mν
log

(
b log 2

σ[log log(b/σ)− log(−mν log c)]

)])
= log

(
exp

[
log κ+ (log c)

log b
σ

−mν log c

]

+

(
L′√mσ[log log(b/σ)− log(−mν log c)]

b log 2

) 1
mν

)

= log

(
κ

(
b

σ

)− 1
mν

+

(
L′√mσ[log log(b/σ)− log(−mν log c)]

b log 2

) 1
mν

)

= log

((
L′√mσ[log log(b/σ)− log(−mν log c)]

b log 2

) 1
mν

×

 κ
(
b
σ

)− 1
mν(

L′√mσ[log log(b/σ)−log(−mν log c)]
b log 2

) 1
mν

+ 1


)
, (III.39)

73

where we use the fact that 2x/ log 2 = exp(x) for x ∈ R. Simplifying the second term

within the log(·) function, we obtain that

κ
(
b
σ

)− 1
mν(

L′√mσ[log log(b/σ)−log(−mν log c)]
b log 2

) 1
mν

=
κ
(
1
σ

)− 1
mν(

L′√mσ[log log(b/σ)−log(−mν log c)]
log 2

) 1
mν

. (III.40)

Since

lim
b→∞

κ
(
1
σ

)− 1
mν(

L′√mσ[log log(b/σ)−log(−mν log c)]
log 2

) 1
mν

= 0, (III.41)

then by continuity of the log(·) function,

lim
b→∞

log

 κ
(
b
σ

)− 1
mν(

L′√mσ[log log(b/σ)−log(−mν log c)]
b log 2

) 1
mν

+ 1

 = 0. (III.42)

Therefore, continuing from (III.39),

lim
b→∞

log equadb

log b
= lim

b→∞

1

mν

(
logL′√mσ

log b
+

log[log log(b/σ)− log(−mν log c)]
log b

− log b

log b
− log log 2

log b

)
= − 1

mν
. (III.43)

This completes the proof.

Roughly, what Theorem III.9 says is, if you make certain choices for the dis-

cretization, by picking Nb and nb as in (III.36) and (III.37), respectively, for large b,

if b increases by a factor b1 ∈ (1,∞), then equadraticb decreases by a factor b
− 1

mν
1 .

5. Linearly Convergent Algorithm Map

We next obtain an error bound for Algorithm III.1 with a uniform linearly

convergent algorithm map.

Lemma III.10. Suppose that Assumptions III.3 and III.4 hold. Suppose also that

Algorithm III.1 with a uniform linearly convergent algorithm map is used to solve

(SMX), i.e., there exist n1 ∈ N0, n1 <∞, N1 ∈ N, and c ∈ (0, 1) such that

ψN(x
N
n+1)− ψ∗

N

ψN(xNn)− ψ∗
N

≤ c, (III.44)

74

for all n ≥ n1 and N ≥ N1. Then there exists a κ < ∞ such that for all n ≥ n1 and

N ≥ N1,

ψ(xNn)− ψ∗ ≤ cnκ+∆m(N). (III.45)

Proof. Based on Proposition III.1(iii), (III.10), (III.44), and using similar arguments

as the proof for Lemma III.8,

ψ(xNn)− ψ∗ ≤ ψN(x
N
n) + ∆m(N)− ψ∗

N

≤ cn−n1 [ψN(x
N
n1
)− ψ∗

N] + ∆m(N)

≤ cn(c−n1 [ψ(xNn1
)− ψ∗ +∆m(N1)]) + ∆m(N), (III.46)

where N1 is as in Assumption III.3. The remaining part of the proof follows the same

arguments as the proof for Lemma III.8.

From (III.45), we define the error bound for Algorithm III.1 with a linearly

convergent algorithm map as

elinearb

△
= cnbκ+∆m(Nb). (III.47)

The next result states that a fixed discretization algorithm with a linearly

convergent algorithm map can achieve the same asymptotic rate of decay of error

bound as Algorithm III.2.

Theorem III.11. Suppose that Assumptions III.3, III.4, and III.5 hold. Suppose

also that a computational budget b ∈ N is allocated to Algorithm III.1 with a uniform

linearly convergent algorithm map with rate of convergence given by (III.44) to solve

(SMX). If

Nb =

(
−mbν log c

σ log b

)1/ν

(III.48)

and

nb = − b log b

mbν log c
(III.49)

for all b ∈ N, then (III.22) is satisfied and

lim
b→∞

log elinearb

log b
= − 1

mν
, (III.50)

75

where m ∈ N is the uncertainty dimension and ν is as defined in Assumption III.5.

Proof. From (III.11), (III.22), and (III.45),

log elinearb = log

(
exp

[
b log c

σN ν
b

+ log κ

]
+ exp

[
logL′√m− log(N

1/m
b)

])
= log

(
exp

[
−σb log b log c
σmbν log c

+ log κ

]

+ exp

[
logL′√m− log

([
−mbν log c
σ log b

]1/mν
)])

= log

(
exp

[
logL′√m− log

([
−mbν log c
σ log b

]1/mν
)]

×
exp

[− log b
mν

+ log κ
]

exp

[
logL′√m− log

([
−mbν log c

σ log b

]1/mν
)] + 1


)
. (III.51)

Simplifying the second term within the outermost log(·) function,

exp
[− log b

mν
+ log κ

]
exp

[
logL′√m− log

([
−mbν log c

σ log b

]1/mν
)] =

κ

([
−mbν log c

σ log b

]1/mν
)

b1/mνL′√m

=

κ

([
−mν log c
σ log b

]1/mν
)

L′√m
. (III.52)

Since

lim
b→∞

κ

([
−mν log c
σ log b

]1/mν
)

L′√m
= 0, (III.53)

then by continuity of the log(·) function,

lim
b→∞

log


exp

[− log b
mν

+ log κ
]

exp

[
logL′√m− log

([
−mbν log c

σ log b

]1/mν
)] + 1

 = 0. (III.54)

76

Therefore, from (III.51),

lim
b→∞

log elinearb

log b
= lim

b→∞

logL′√m
log b

−
log

([
−mbν log c

σ log b

]1/mν
)

log b

= lim
b→∞

− 1

mν

(
log(−mν log c) + log b− log σ − log log b

log b

)
= − 1

mν
. (III.55)

This completes the proof.

6. Sublinearly Convergent Algorithm Map

Since both the quadratically and linearly convergent algorithm maps obtain

the ideal rate of decay of error bound of b−1/mν , one may think that the rate of the

algorithm map does not matter. But that is not the case, as the following counter

example shows. We next obtain an error bound for Algorithm III.1 with a uniform

sublinearly convergent algorithm map. We define the initial error e0
△
= ψ(x0)− ψ∗.

Lemma III.12. Suppose that Assumption III.3 holds. Suppose also that Algorithm

III.1 with a uniform sublinearly convergent algorithm map is used to solve (SMX),

i.e., there exist N1 ∈ N and a > 1 such that

ψN(x
N
n+1)− ψ∗

N

ψN(xNn)− ψ∗
N

≤ 1− 1

n+ a
(III.56)

for all n ∈ N, N ∈ N, and N ≥ N1. Then for any n ∈ N, N ∈ N, N ≥ N1,

ψ
(
xNn
)
− ψ∗ ≤ a− 1

n− 1 + a
e0 + 2∆m(N). (III.57)

77

Proof: Based on Proposition III.1, (III.10), and (III.56),

ψ
(
xNn
)
− ψ∗

≤ ψN

(
xNn
)
+∆m(N)− ψ∗

N

≤
(
1− 1

a

)(
1− 1

1 + a

)
...

(
1− 1

n− 1 + a

)
[ψN(x0)− ψ∗

N] + ∆m(N)

=

(
a− 1

a

)(
a

1 + a

)
...

(
n− 2 + a

n− 1 + a

)
[ψN(x0)− ψ∗

N] + ∆m(N)

≤ a− 1

n− 1 + a
[ψ(x0)− ψ∗ +∆m(N)] + ∆m(N)

≤ a− 1

n− 1 + a
e0 + 2∆m(N). (III.58)

This completes the proof.

From (III.57), we define the error bound for Algorithm III.1 with a sublinearly

convergent algorithm map as

esubb

△
=

a− 1

nb − 1 + a
e0 + 2∆m(Nb). (III.59)

The next result states that a fixed discretization algorithm with a sublinearly

convergent algorithm map is unable to achieve the same asymptotic rate of decay of

error bound as Algorithm III.2.

Theorem III.13. Suppose that Assumptions III.3, III.4, and III.5 hold. Suppose

also that a computational budget b ∈ N is allocated to Algorithm III.1 with a uniform

sublinearly convergent algorithm map with rate of convergence given by (III.56) to

solve (SMX). Then for all possible sequences of {(Nb, nb)}b∈N,

lim inf
b→∞

log esubb

log b
> − 1

mν
, (III.60)

where m ∈ N is the uncertainty dimension and ν is as defined in Assumption III.5.

78

Proof. From (III.11), (III.22), and (III.57),

log esubb = log

(
exp [log(a− 1) + log e0 − log(nb − 1 + a)]

+ exp

[
log 2L′√m− log b

mν
+

log σnb

mν

])
≥ log

(
max

{
exp [log(a− 1) + log e0 − log(nb − 1 + a)] ,

exp

[
log 2L′√m− log b

mν
+

log σnb

mν

]})
= max

{
log (exp [log(a− 1) + log e0 − log(nb − 1 + a)]) ,

log

(
exp

[
log 2L′√m− log b

mν
+

log σnb

mν

])}
= max

{
log(a− 1) + log e0 − log(nb − 1 + a),

log 2L′√m− log b

mν
+

log σnb

mν

}
. (III.61)

Hence, for any b ≥ 2,

log esubb

log b
≥ max

{
log(a− 1)

log b
+

log e0
log b

− log(nb − 1 + a)

log b
,

log 2L′√m
log b

− log b

mν log b
+

log σnb

mν log b

}
. (III.62)

For the sake of contradiction, we assume that there exists a sequence {Nb, nb}b≥2

where

lim inf
b→∞

log esubb

log b
≤ − 1

mν
. (III.63)

This implies that for every ϵ > 0, there exists an infinite subsequence B ⊂ N, a

b1 ∈ B, b1 ≥ 2 such that
log esubb

log b
≤ − 1

mν
+ ϵ, (III.64)

for all b ∈ B, b ≥ b1. From (III.62) and (III.64),

log(a− 1)

log b
+

log e0
log b

− log(nb − 1 + a)

log b
≤ − 1

mν
+ ϵ, (III.65)

79

and

log 2L′√m
log b

− 1

mν
+

log σnb

mν log b
≤ − 1

mν
+ ϵ, (III.66)

for all b ∈ B, b ≥ b1. From (III.65) and (III.66), there exists a b2 ∈ B, b2 ≥ b1 such

that

log nb

log b
≥ 1

mν
− 2ϵ, (III.67)

and

log nb

log b
≤ 2mνϵ, (III.68)

for all b ∈ B, b ≥ b2. Since ϵ is arbitrary, (III.67) contradicts (III.68) for sufficiently

small ϵ, and the conclusion follows.

7. Smoothing Algorithm Map

In this subsection, we analyze the rate of decay of error bound for Algorithm

III.1 using smoothing algorithms as algorithm maps. We first repeat some of the

known results on the exponential smoothing technique from Section II.B, based on

the assumptions and notation in this chapter.

For any p > 0 and N ∈ N, we consider a smooth approximating problem to

the generally non-differentiable (SMXN),

(SMXNp) min
x∈Rd

ψNp(x), (III.69)

where

ψNp(x)
△
=

1

p
log

(∑
y∈YN

exp (pϕ(x, y))

)
(III.70)

= ψN(x) +
1

p
log

(∑
y∈YN

exp (p(ϕ(x, y)− ψN(x)))

)
(III.71)

is the exponential penalty function.

The parameter p > 0 is the smoothing precision parameter, where a larger p

implies higher precision. With the obvious notational changes, we have a similar result

80

on the bounds for ψNp(x) − ψN(x) and the differentiability of ψNp(·) as Proposition

II.1.

Assumption III.14. The function ϕ(·, ·) is twice continuously differentiable on Rd×

Y .

Lemma III.15. Suppose that Assumption III.14 holds. Then for every bounded set

S ⊂ Rd, there exists an L <∞ such that

⟨z,∇2ψNp(x)z⟩ ≤ pL∥z∥2, (III.72)

for all x ∈ S, z ∈ Rd, N ∈ N, and p ≥ 1.

Proof. The proof follows similar arguments as the proof for Lemma II.7 on p. 20.

When they exist, we denote the optimal value of (SMXNp) by ψ∗
Np for any

N ∈ N and p > 0, and the optimal solution of (SMXNp) by x
∗
Np. We denote the nth

iterate of a sequence generated by an algorithm map when applied to (SMXNp) by

xNp
n .

Lemma III.16. Suppose that Assumption III.4 holds. For any x, z ∈ Rd, N ∈ N,

and p > 0,

a∥z∥2 ≤
⟨
z,∇2ψNp(x)z

⟩
, (III.73)

where a satisfies the inequality in Assumption III.4.

Proof. The proof follows the same arguments as the proof for Lemma II.5 on p. 19.

The Armijo Gradient Method is referenced in the following proposition. The

Armijo Gradient Method uses the steepest descent search direction and the Armijo

stepsize rule to solve an unconstrained problem; see for example Algorithm 1.3.3 of

Polak (1997).

Proposition III.17. Suppose that Assumption III.4 holds, N ∈ N, and p ≥ 1. Then

the rate of convergence for the Armijo Gradient Method to solve (SMXNp) is linear

81

with coefficient 1−k/p, for some k ∈ (0, 1). That is, for any sequence {xNp
n }∞n=0 ⊂ Rd

generated by the Armijo Gradient Method when applied to (SMXNp), there exists a

k ∈ (0, 1) such that

ψNp(x
Np
n+1)− ψ∗

Np ≤
(
1− k

p

)
[ψNp(x

Np
n)− ψ∗

Np)] for all n ∈ N0. (III.74)

Proof. The proof follows the same arguments as the proof for Proposition II.8 on

p. 22.

Lemma III.18. Suppose that Assumptions III.3 and III.4 hold. If the Armijo Gra-

dient method is applied on (SMXNp), where p ≥ 1, N ∈ N, N ≥ N1, and N1 is as

defined in Assumption III.3. Then for any n ∈ N,

ψ(xNp
n)− ψ∗ ≤

(
1− k

p

)n

e0 + 2∆m(N) +
2 logN

p
, (III.75)

where k ∈ (0, 1) is the constant in Proposition III.17.

Proof. Since ϕ(·, y) is twice continuously differentiable for all y ∈ Y , with an equiv-

alent result for ψNp(·) as Proposition II.1, ψNp(·) is continuous and

0 ≤ ψNp(x)− ψN(x) ≤
logN

p
(III.76)

for all N ∈ N, p > 0, and x ∈ Rd. Based on Proposition III.17,

ψ(xNp
n)− ψ∗

≤ ψN(x
Np
n) + ∆m(N)− ψN(x

∗)

≤ ψNp(x
Np
n) + ∆m(N)− ψNp(x

∗) + (logN)/p

≤ ψNp(x
Np
n)− ψ∗

Np +∆m(N) + (logN)/p

≤ (1− (k/p))n
[
ψNp(x0)− ψ∗

Np

]
+∆m(N) + (logN)/p

≤ (1− (k/p))n
[
ψN(x0) + (logN)/p− ψN(x

∗
Np)
]
+∆m(N) + (logN)/p

≤ (1− (k/p))n
[
ψ(x0) + (logN)/p− ψ(x∗Np) + ∆m(N)

]
+∆m(N) + (logN)/p

≤ (1− (k/p))n [ψ(x0)− ψ(x∗)] + 2∆m(N) + (2 logN)/p. (III.77)

82

This completes the proof.

From (III.75), we define the error bound for Algorithm III.1 with a smoothing

algorithm map as

esmooth
b

△
=

(
1− k

pb

)nb

e0 + 2∆m(Nb) +
2 logNb

pb
. (III.78)

The next result states that a fixed discretization algorithm with a smoothing

algorithm map is unable to achieve the same asymptotic rate of decay of error bound

as Algorithm III.2.

Theorem III.19. Suppose that Assumptions III.3, III.4, and III.5 hold. Suppose

also that a computational budget b ∈ N is expended by running nb ∈ N iterations

of the Armijo Gradient method on (SMXNbpb), with discretization parameter Nb ∈

N, Nb ≥ N1 as defined in Assumption III.3, and smoothing parameter pb ≥ 1. Then

for all possible sequences of {Nb, nb, pb}b∈N satisfying (III.22),

lim inf
b→∞

log esmooth
b

log b
> − 1

mν
, (III.79)

where m ∈ N is the uncertainty dimension and ν is as defined in Assumption III.5.

83

Proof. From (III.11), and (III.75),

log esmooth
b = log

(
exp

[
b

σN ν
b

log

(
1− k

pb

)
+ log e0

]
+ exp

[
log

2L′√m
N

1/m
b

]

+ exp

[
log

2 logNb

pb

])

≥ log

(
max

{
exp

[
b

σN ν
b

log

(
1− k

pb

)
+ log e0

]
, exp

[
log

2L′√m
N

1/m
b

]
,

exp

[
log

2 logNb

pb

]})

= max

{
log

(
exp

[
b

σN ν
b

log

(
1− k

pb

)
+ log e0

])
,

log

(
exp

[
log

2L′√m
N

1/m
b

])
, log

(
exp

[
log

2 logNb

pb

])}

= max

{
b

σN ν
b

log

(
1− k

pb

)
+ log e0, log

2L′√m
N

1/m
b

, log
2 logNb

pb

}
.(III.80)

Hence, for any b ∈ N, b ≥ 2,

log esmooth
b

log b
≥ max

 b

σN ν
b log b

log

(
1− k

pb

)
+

log e0
log b

,
log 2L′√m

N
1/m
b

log b
,
log 2 logNb

pb

log b

 .(III.81)

For the sake of contradiction, we assume that there exists a sequence

{Nb, nb, pb}b∈N where

lim inf
b→∞

log esmooth
b

log b
≤ − 1

mν
. (III.82)

This implies that there exists an infinite subsequence B ⊂ N such that

lim
b→B∞

log esmooth
b

log b
≤ − 1

mν
, (III.83)

which further implies that for any ϵ ∈ (0,
1

mν

1+mν
), there exists a b1 ∈ B such that

log esmooth
b

log b
≤ − 1

mν
+ 1

2
ϵ, (III.84)

for all b ∈ B, b ≥ b1. From (III.81) and (III.84), we have

b

σN ν
b log b

log

(
1− k

pb

)
≤ − 1

mν
+ 1

2
ϵ, (III.85)

84

log 2L′√m
log b

− logNb

m log b
≤ − 1

mν
+ 1

2
ϵ, (III.86)

and

log 2

log b
+

log logNb

log b
− log pb

log b
≤ − 1

mν
+ 1

2
ϵ, (III.87)

for all b ∈ B, b ≥ max{2, b1}.

There exists a b2 ∈ B, b2 ≥ b1 such that (log 2L′√m)/log b ≥ −1
2
ϵ for all b ≥ b2.

From (III.85)-(III.87), we get that

b

σN ν
b log b

log

(
1− k

pb

)
≤ − 1

mν
+ ϵ, (III.88)

− logNb

m log b
≤ − 1

mν
+ ϵ, (III.89)

and

log logNb

log b
− log pb

log b
≤ − 1

mν
+ ϵ (III.90)

for all b ∈ B, b ≥ max{2, b2}.

From (III.89), for all b ∈ B, b ≥ max{2, b2},

Nb ≥ b
1
ν
−mϵ. (III.91)

From (III.90), for all b ∈ B, b ≥ max{2, b2}, pb ≥ 1,

log
(

logNb

pb

)
log b

≤ − 1

mν
+ ϵ. (III.92)

This implies that

pb ≥
logNb

b−
1

mν
+ϵ
. (III.93)

Next, we substitute Nb ≥ b
1
ν
−mϵ from (III.91) into (III.93), and we get

pb ≥
logNb

b−
1

mν
+ϵ

≥ log b
1
ν
−mϵ

b−
1

mν
+ϵ

=

(
1

ν
−mϵ

)
b

1
mν

−ϵ log b, (III.94)

85

for all b ∈ B, b ≥ max{2, b2}. Using Nb ≥ b
1
ν
−mϵ from (III.91),

b

σN ν
b log b

≤ b

σ
(
b

1
ν
−mϵ
)ν

log b
=

b

σ (b1−mνϵ) log b
, (III.95)

for all b ∈ B, b ≥ max{2, b2}. Observe from (III.94) that if ϵ <
1

mν

1+mν
, then 1

mν
− ϵ > 0

and pb → ∞ as b→ ∞. Thus, there exists a b3 ∈ B, b3 ≥ b2 such that k/pb ∈ [0, 1/2]

for all b ≥ b3, and based on Lemma II.13,

log

(
1− k

pb

)
≥ −2k

pb
(III.96)

for all b ∈ B, b ≥ b3.

Based on (III.94)-(III.96),

b

σN ν
b log b

log

(
1− k

pb

)
≥ b

σ (b1−mνϵ) log b

−2k(
1
ν
−mϵ

)
b

1
mν

−ϵ log b

=
−2k

σ
(
1
ν
−mϵ

)
b

1
mν

−mνϵ−ϵ log2 b
. (III.97)

As ϵ <
1

mν

1+mν
, 1

mν
− mνϵ − ϵ > 0 and −2k

σ(1
ν
−mϵ)b

1
mν −mνϵ−ϵ log2 b

→ 0 as b → ∞.

Thus, there exists a b4 ∈ B such that (III.97) contradicts (III.88) for all b ≥ b4. This

completes the proof.

C. EFFICIENCY OF ϵ-SUBGRADIENT METHOD

Section III.B shows that discretization algorithms for solving (SMX) can ob-

tain at best an asymptotic rate of decay of error bound of b−1/mν as b → ∞, where

m is the uncertainty dimension, ν is a parameter related to the work per iteration of

the algorithm map, and b is the computational budget expended. Hence, discretiza-

tion methods may perform poorly for (SMX) with large uncertainty dimension. In

this section, we show that an ϵ-subgradient algorithm for (SMX), which relies on ad-

ditional assumptions as compared to discretization algorithms, have more favorable

rate of decay of error bound for moderate and large m.

This section starts with some definitions followed by a description of the ϵ-

subgradient algorithm. We then we determine the rate of decay of an error bound

86

based on the ϵ-subgradient algorithm. Most of the background information on the

ϵ-subgradient algorithm in this section are extracted from Bertsekas (2010).

We start by defining subgradients and subdifferentials.

Definition III.1. Let f : Rd → R be a convex function. A vector g ∈ Rd is

(i) a subgradient of f(·) at a point x ∈ Rd if

f(z) ≥ f(x)− (z − x)Tg (III.98)

for all z ∈ Rd,

(ii) an ϵ-subgradient of f(·) (ϵ > 0) at a point x ∈ Rd if

f(z) ≥ f(x)− (z − x)Tg − ϵ (III.99)

for all z ∈ Rd.

(iii) The set of all subgradients of a convex function f(·) at x ∈ Rd is called the
subdifferential of f(·) at x ∈ Rd, which is denoted by ∂f(x).

We consider the following ϵ-subgradient algorithm.

Algorithm III.3. ϵ-Subgradient Algorithm

Data: x0 ∈ Rd.

Parameters: α > 0, ϵ > 0.

Step 1. Set i = 0.

Step 2. Compute yi ∈ Y such that

ϕ(xi, yi) ≥ ψ(xi)− ϵ. (III.100)

Step 3. Determine the next iterate

xi+1 = xi − α∇xϕ(xi, yi). (III.101)

Step 4. Replace i by i+ 1, and go to Step 2.

The key step of Algorithm III.3 is Step 2, where we find a yi ∈ Y that has a

value within ϵ of ψ(xi). Under the assumption that for all y ∈ Y , ϕ(·, y) is convex for

all x ∈ Rd, the search direction ∇xϕ(xi, yi) is an ϵ-subgradient of ψ(·) at xi.

87

In Algorithm III.3, we use constant stepsize α. There are two other step-

size rules for subgradient algorithms, diminishing stepsize and dynamically-chosen

stepsize. We refer to Bertsekas (2010, pp. 272-274) for a detailed discussion of the

advantages and disadvantages of the three schemes. In the theoretical and numerical

results that follow, we see that even though the simplest scheme of constant step-

size is considered, the rate of decay of error bound for the ϵ-subgradient algorithm

is fundamentally better than the discretization approach as its rate of decay of er-

ror bound does not depend on the uncertainty dimension, unlike the discretization

case. However, as stated next, we need an additional concavity assumption for the

ϵ-subgradient algorithm.

Assumption III.20. The functions ϕ(·, y) are convex for all y ∈ Y , and ϕ(x, ·) are

concave for all x ∈ Rd.

The above assumption is necessary as subgradient algorithms only handle con-

vex problems. In addition, the concavity assumption is required to ensure that the

global maximization step in Step 2 of Algorithm III.3 can be completed in finite time.

We compare that to the assumptions for discretization algorithms, where strong con-

vexity on ϕ(·, y) for all y ∈ Y is required, but no concavity assumption is necessary.

We refer to problems that satisfy Assumption III.20 as convex-concave problems.

We also need the following assumption on the boundedness of the subgradients.

Assumption III.21. For any bounded set S ⊂ Rd, there exists an s <∞ such that

sup
i∈N0,xi∈S

{∥g∥|g ∈ ∂ψ(xi)} ≤ s. (III.102)

We obtain the following convergence result for Algorithm III.3 from Bertsekas

(2010, p. 349).

88

Proposition III.22. Suppose that for all y ∈ Y , ϕ(·, y) is convex on Rd. If {xi}i∈N0

is a sequence generated by Algorithm III.3, then for all i ∈ N0 and x ∈ Rd,

∥x− xi+1∥2 ≤ ∥x− xi∥2 − 2α [ψ(xi)− ψ(x)− ϵ] + α2∥gi∥2, (III.103)

where α and ϵ > 0 are as in Algorithm III.3, and gi ∈ Rd is an ϵ-subgradient of ψ(·)

at xi.

We denote the optimal solution set of (SMX) by X∗ △
=
{
x ∈ Rd|ψ(x) = ψ∗}

and the distance of the initial point x0 to X∗ by d(x0)
△
= minx∈X∗ ∥x0 − x∥. We

follow the arguments in the convergence analyses of Bertsekas (2010, Section 6.3)

on subgradient algorithm to derive the following two convergence results for the ϵ-

subgradient algorithm, Algorithm III.3.

Proposition III.23. Suppose that Assumption III.21 holds, and that ϕ(·, y) are con-

vex for all y ∈ Y . If the sequence {xi}i∈N0 is generated by Algorithm III.3 in solving

(SMX), then

lim inf
i→∞

ψ(xi) ≤ ψ∗ +
αs2

2
+ ϵ, (III.104)

where α and ϵ > 0 are as in Algorithm III.3, and s is as in Assumption III.21.

Proof. The proof follows the same arguments as that for the subgradient algorithm

in Bertsekas (2010, p. 275), with the difference that (III.103) is used here for the

ϵ-subgradient algorithm instead of the corresponding equation for the subgradient

algorithm.

The next result gives an estimate of the number of iterations required by

Algorithm III.3 to attain an error tolerance of (αs2/2) + ϵ+ ϵ′/2, for any ϵ′ > 0.

Theorem III.24. Suppose that the functions ϕ(·, y) are convex for all y ∈ Y . Suppose

also that Assumption III.21 holds, and the sequence {xi}i∈N0 is generated by Algorithm

III.3 in solving (SMX). If X∗ is nonempty, then for any ϵ′ > 0,

min
0≤i≤K

ψ(xi)− ψ∗ ≤ αs2 + 2ϵ+ ϵ′

2
, (III.105)

89

where

K =

⌊
d(x0)

2

αϵ′

⌋
, (III.106)

α and ϵ > 0 are as in Algorithm III.3, and s is as in Assumption III.21.

Proof. We follow the proof for the subgradient algorithm in Bertsekas (2010, Propo-

sition 6.3.3), with (III.103) replacing the inequality 6.3.1(a) of Bertsekas (2010). For

the sake of contradiction, we assume that (III.105) does not hold. Thus, for all i such

that 0 ≤ i ≤ K,

ψ(xi)− ψ∗ − ϵ >
αs2 + ϵ′

2
. (III.107)

Using this relation in (III.103), with x ∈ X∗, we obtain for all i such that 0 ≤ i ≤ K,

min
x∗∈X∗

∥xi+1 − x∗∥2 ≤ min
x∗∈X∗

∥xi − x∗∥2 − 2α [ψ(xi)− ψ∗ − ϵ] + α2s2

≤ min
x∗∈X∗

∥xi − x∗∥2 − 2α
αs2 + ϵ′

2
+ α2s2

≤ min
x∗∈X∗

∥xi − x∗∥2 − αϵ′. (III.108)

Applying (III.108) recursively, we obtain

0 ≤ min
x∗∈X∗

∥xi+1 − x∗∥2 ≤ min
x∗∈X∗

∥x0 − x∗∥2 − (K + 1)αϵ′. (III.109)

Solving for K gives

K ≤
min
x∗∈X∗

∥x0 − x∗∥2

αϵ′
− 1 =

d(x0)
2

αϵ′
− 1, (III.110)

which contradicts (III.106).

The following assumption regarding the computational work required for func-

tion and gradient evaluations provide the basis for analyzing the computational work

required for Algorithm III.3 to solve (SMX).

Assumption III.25. There exist constants γ, a′, a′′ < ∞ such that for any x ∈ Rd,

y ∈ Y ⊂ Rm, the computational work to evaluate any of the three functions ϕ(x, y),

∇xϕ(x, y), or ∇yϕ(x, y) is no larger than γma′da
′′
.

90

The following assumption ensures that Algorithm III.3 generates bounded se-

quences.

Assumption III.26. The level set

L(x0)
△
= {x|ψ(x) ≤ ψ(x0)} (III.111)

is bounded, for all x0 ∈ Rd, where x0 is as in Algorithm III.3.

We refer to the iterations of Algorithm III.3 as major iterations and the it-

erations of the algorithm map in Step 2 of Algorithm III.3 as minor iterations. We

denote the jth minor iterate during the ith major iteration as yi,j.

Assumption III.27. A linearly convergent algorithm map is used in Step 2 of Algo-

rithm III.3, i.e., there exist a c ∈ (0, 1) such that

ψ(xi)− ϕ(xi, yi,j+1)

ψ(xi)− ϕ(xi, yi,j)
≤ c (III.112)

for all j ≥ 1. In addition, the computational work in the linearly converging algorithm

is no larger than a constant number of function and gradient evaluations at each

iteration.

We define

emax
0

△
= sup

x∈Rd,y1,y2∈Y
|ϕ(x, y1)− ϕ(x, y2)|. (III.113)

The next result provides an upper bound on the computational work of Algorithm

III.3.

Theorem III.28. Suppose that Assumptions III.2, III.14, III.20, III.25, III.26,

III.27 hold, and X∗ is nonempty. Then for any x0 ∈ Rd, ϵ, ϵ′, α > 0, there exist

constants a, a′, a′′, c′, c′′ <∞, such that the computational work in Algorithm III.3 to

generate {xi}Ki=0, to solve (SMX), while satisfying (III.105) and (III.106) is no larger

than
a

αϵ′

[
mc′dc

′′
+ma′da

′′
(
log(ϵ/emax

0)

log c
+ 1

)]
if ϵ < emax

0 , (III.114)

91

and
amc′dc

′′

αϵ′
otherwise. (III.115)

Proof. The main computational work in Algorithm III.3 is in Step 2, to determine

an ϵ-maximizer yi. Since Y is bounded, and for all x ∈ Rd, ϕ(x, ·) is globally Lipschitz

continuous according to Assumption III.2, emax
0 < ∞. Based on Assumption III.27,

the number of iterations required to obtain yi such that ψ(xi) − ϕ(xi, yi) ≤ ϵ′ is no

larger than (log(ϵ/emax
0)/ log c) + 1 if ϵ < emax

0 , and equals zero if ϵ ≥ emax
0 . Since the

computational work in the linearly convergent algorithm is no larger than a constant

number of function and gradient evaluations at each iteration, based on Assumption

III.25, there exist constants γ, a′, a′′ < ∞ such that the computational work at each

iteration is no larger than γma′da
′′
.

The main computational work in Step 3 of Algorithm III.3 is the computation

of the gradient ∇xϕ(xi, yi), and based on Assumption III.25, there exist constants

ζ, c′, c′′ <∞ such that the computational work for Step 3 is no larger than ζmc′dc
′′
.

Based on Assumption III.26 and (III.106), there exists a β <∞ such that

K =

⌊
d(x0)

2

αϵ′

⌋
≤ d(x0)

2

αϵ′
≤ β

αϵ′
. (III.116)

Thus the overall computational work for Algorithm III.3 to generate {xi}Ki=0,

satisfying (III.105) and (III.106) is no larger than

a

αϵ′

[
mc′dc

′′
+ma′da

′′
(
log(ϵ/emax

0)

log c
+ 1

)]
if ϵ < emax

0 , (III.117)

where a = max{βζ, βγ}, and

amc′dc
′′

αϵ′
otherwise, (III.118)

where a = βζ.

From (III.105), we define the error bound for Algorithm III.3 as

esubgradb

△
=
αbs

2 + 2ϵb + ϵ′b
2

, (III.119)

92

with αb, ϵb, ϵ
′
b > 0 satisfying the following inequalities for b ∈ N,

a

αbϵ′b

[
mc′dc

′′
+ma′da

′′
(
log(ϵb/e

max
0)

log c
+ 1

)]
≤ b if ϵb < emax

0 , (III.120)

and
amc′dc

′′

αbϵ′b
≤ b otherwise. (III.121)

We call a sequence {ϵb, ϵ′b, αb}∞b=1, b ∈ N a feasible sequence if it satisfies

(III.120) and (III.121).

The next result states that Algorithm III.3 achieves an asymptotic rate of

decay of error bound esubgradb of b−1/2 as b→ ∞.

Theorem III.29. Suppose that Assumptions III.2, III.14, III.20, III.21, III.25,

III.26, and III.27 hold. If Algorithm III.3 is used to solve (SMX), then for all arbitrary

feasible sequences of {ϵb, ϵ′b, αb}b∈N,

lim inf
b→∞

log esubgradb

log b
≥ −1

2
. (III.122)

For all b ∈ N, if ϵb = ϵ′b = m/
√
b and if

αb =
a

bϵ′b

[
mc′dc

′′
+ma′da

′′
(
log(ϵb/e

max
0)

log c
+ 1

)]
whenever ϵb < emax

0 , (III.123)

and

αb =
amc′dc

′′

bϵ′b
otherwise, (III.124)

then

lim
b→∞

log esubgradb

log b
= −1

2
. (III.125)

Proof. For any arbitrary feasible sequence of {ϵb, ϵ′b, αb}b∈N, we first consider the set

A ⊂ N, where ϵb ≥ emax
0 for all b ∈ A. Based on (III.119), esubgradb ≥ emax

0 for all

b ∈ A. Since emax
0 ≥ 0 by definition, there exists a b0 ∈ N such that

log esubgradb

log b
≥ −1

2
(III.126)

for all b ∈ A, b ≥ b0.

93

Next, we consider those b ∈ N − A (where ‘−’ represents the set difference

operator), where ϵb < emax
0 . Based on (III.120), we obtain that

αb ≥
a

bϵ′b

[
mc′dc

′′
+ma′da

′′
(
log(ϵb/e

max
0)

log c
+ 1

)]
. (III.127)

We substitute αb into (III.119), and we obtain that

esubgradb ≥ a

2bϵ′b

[
mc′dc

′′
+ma′da

′′
(
log(ϵb/e

max
0)

log c
+ 1

)]
s2 + ϵb +

ϵ′b
2

=
amc′dc

′′
s2

2bϵ′b
+
ama′da

′′
s2

2bϵ′b

(
log(ϵb/e

max
0)

log c
+ 1

)
+ ϵb +

ϵ′b
2
. (III.128)

Taking log on both sides, we obtain that

log esubgradb ≥ log

(
exp

[
log amc′dc

′′
s2 − log 2bϵ′b

]
+ exp

[
log ama′da

′′
s2 − log 2bϵ′b

+ log

(
log(ϵb/e

max
0)

log c
+ 1

)]
+ exp [log ϵb] + exp

[
log

ϵ′b
2

])
≥ log

(
max

{
exp

[
log amc′dc

′′
s2 − log 2bϵ′b

]
,

exp

[
log ama′da

′′
s2 − log 2bϵ′b + log

(
log(ϵb/e

max
0)

log c
+ 1

)]
,

exp [log ϵb] , exp

[
log

ϵ′b
2

]})

= max

{
log
(
exp

[
log amc′dc

′′
s2 − log 2bϵb

])
,

log

(
exp

[
log ama′da

′′
s2 − log 2bϵb + log

(
log(ϵb/e

max
0)

log c
+ 1

)])
,

log (exp [log ϵb]) , log

(
exp

[
log

ϵ′b
2

])}
= max

{
log amc′dc

′′
s2 − log 2bϵb,

log ama′da
′′
s2 − log 2bϵb + log

(
log(ϵb/e

max
0)

log c
+ 1

)
,

log ϵb, log
ϵ′b
2

}
. (III.129)

94

Hence, for any b ∈ N−A, b > 1, we obtain that

log esubgradb

log b
≥ max

{
log amc′dc

′′
s2

log b
− log 2bϵb

log b
,

log ama′da
′′
s2

log b
− log 2bϵb

log b
+

log
(

log(ϵb/e
max
0)

log c
+ 1
)

log b
,

log ϵb
log b

,
log

ϵ′b
2

log b

}
. (III.130)

For the sake of contradiction, we assume that there exists a feasible sequence

{ϵb, ϵ′b, αb}b∈N−A such that

lim inf
b→∞

log esubgradb

log b
< −1

2
. (III.131)

This implies that there exists a δ > 0, a b1 > 1, and an infinite subsequence B ⊂ N−A

such that
log esubgradb

log b
< −1

2
− δ (III.132)

for all b > b1, b ∈ B.

From (III.130) and (III.132), we obtain that

log amc′dc
′′
s2

log b
− log 2bϵ′b

log b
< −1

2
− δ, (III.133)

log ama′da
′′
s2

log b
− log 2bϵ′b

log b
+

log
(

log(ϵb/e
max
0)

log c
+ 1
)

log b
< −1

2
− δ, (III.134)

log ϵb
log b

< −1

2
− δ, (III.135)

and
log

ϵ′b
2

log b
< −1

2
− δ, (III.136)

for all b > b1, b ∈ B. Based on (III.134) and (III.136), there exists δ > 0, b2 > b1, and

an infinite subsequence B such that

−1− log ϵ′b
log b

< −1

2
− 1

2
δ (III.137)

95

and
log ϵ′b
log b

< −1

2
− 1

2
δ (III.138)

for all b > b2, b ∈ B.

From (III.137), we obtain that

log ϵ′b
log b

> −1

2
+

1

2
δ, (III.139)

which contradicts (III.138).

Thus, the conclusion follows for the first part of the theorem.

Next, we prove the second part of the theorem. Since ϵb = m/
√
b, there exists

a b1 ∈ N such that ϵb < emax
0 . Since we are concerned with the asymptotic rate of

decay of error bound esubgradb when b → ∞, we only need to consider the case where

ϵb < emax
0 . Thus, substituting ϵb = ϵ′b = m/

√
b and αb as in (III.123) into (III.119),

we obtain that

esubgradb =
a

2m
√
b

mc′dc
′′
+ma′da

′′

 log
(

m
emax
0

√
b

)
log c

+ 1

 s2 + m√
b
+

m

2
√
b

=
1√
b

amc′dc
′′
s2

2m
+
ama′da

′′
s2

2m

 log
(

m
emax
0

√
b

)
log c

+ 1

+
3m

2

 . (III.140)
Taking logs on both sides of (III.140), we obtain that

log esubgradb = log
1√
b
+ log

amc′dc
′′
s2

2m
+
ama′da

′′
s2

2m

 log
(

m
emax
0

√
b

)
log c

+ 1

+
3m

2

 .
(III.141)

96

We consider the second term in (III.141), and obtain that

lim
b→∞

log

amc′dc
′′
s2

2m
+
ama′da

′′
s2

2m

 log
(

m
emax
0

√
b

)
log c

+ 1

+
3m

2



= lim
b→∞

log


ama′da

′′
s2

2m

 log
(

m
emax
0

√
b

)
log c

+ 1




ama′da
′′
s2

2m
+ 3m

2

ama′da′′s2

2m

(
log

(
m

emax
0

√
b

)
log c

+ 1

) + 1



 .
(III.142)

Based on the continuity of the log function, and the fact that

lim
b→∞

ama′da
′′
s2

2m
+ 3m

2

ama′da′′s2

2m

(
log

(
m

emax
0

√
b

)
log c

+ 1

) = 0, (III.143)

the right-hand side of (III.142) simplifies to

lim
b→∞

log

ama′da
′′
s2

2m

 log
(

m
emax
0

√
b

)
log c

+ 1

 . (III.144)

From (III.141) and (III.144), we obtain that

lim
b→∞

log esubgradb

log b
= lim

b→∞

log 1√
b

log b
+ lim

b→∞

log

(
log

(
m

emax
0

√
b

)
log c

+ 1

)
log b

(III.145)

as limb→∞
log

(
ama′da

′′
s2

2m

)
log b

= 0. Applying L’Hopital’s rule on the second term of the

right-hand side, we obtain that

lim
b→∞

log

(
log

(
m

emax
0

√
b

)
log c

+ 1

)
log b

= lim
b→∞

 1

log

(
m

emax
0

√
b

)
log c

+1

(1
m log c

emax
0

√
b

)(
− m

2emax
0 b3/2

)
1/b

= lim
b→∞

 1

log

(
m

emax
0

√
b

)
log c

+ 1

(− 1

2 log c

)
= 0, (III.146)

97

and the conclusion follows.

We see from Theorem III.29 that a certain choice of the parameters ϵb, ϵ
′
b, and

αb, b ∈ N, results in an asymptotic rate of decay of error bound esubgradb of b−1/2. If we

compare against the fastest rate of decay for a discretization algorithm of b−1/mν , we

see that for moderate and large m, discretization algorithms may not be competitive

against Algorithm III.3. This difference in the rate of decay of error bound is observed

in the numerical results in the next section.

D. NUMERICAL RESULTS

In this section, we provide numerical evidence to validate some of the key

theoretical results obtained in Sections III.B and III.C. Proposition III.7 indicates

that the asymptotic rate of decay of error bounds for discretization algorithms is no

faster than b−1/mν as b → ∞. We compare that with the ϵ-subgradient algorithm,

Algorithm III.3, where Theorem III.29 indicates that a rate of b−1/2 as b → ∞ is

attainable. The dependence on m, the uncertainty dimension for the discretization

algorithms, implies that under certain convexity-concavity assumptions, discretiza-

tion algorithms will likely not be competitive against ϵ-subgradient algorithms for

semi-infinite problems with high uncertainty dimension. In this section, we provide

some indication on the range of values of m where discretization algorithms are not

competitive with ϵ-subgradient algorithms for convex-concave problems.

From Theorems III.9 and III.11, the asymptotic rate of decay of error bound

for a discretization algorithm that uses a quadratically convergent algorithm map is

the same as that of a linearly convergent algorithm map. In this section, we examine

if there is any numerical difference between a superlinearly convergent algorithm map

and a linearly convergent algorithm map.

We compare the following algorithms over a set of problem instances from

Rustem and Howe (2002):

98

(i) Algorithm III.1 with ϵ-PPP (an active-set version of PPP as stated in Algorithm
2.4.34 in Polak 1997; see also Polak 2008) as the algorithm map.

(ii) Algorithm III.1 with SQP-2QP (Algorithm 2.1 of Zhou & Tits 1996, an SQP
algorithm with two QPs) as the algorithm map.

(iii) The ϵ-subgradient algorithm, Algorithm III.3.

The first two algorithms are discretization algorithms, while the third is an ϵ-sub-

gradient algorithm. We refer to Appendix D for details on the algorithms and the

algorithm parameters used.

We use Problems 1 and 5 from Rustem and Howe (2002, pp. 100-102), which

are two- and three-dimensional in y, respectively. We also modify Problem 1 to

create a one-dimensional (in y) problem instance. We call the three problem instances

SProbA, SProbB, and SProbC, in increasing order of y-dimensionality; see Appendix

C for details.

Similar to Chapter II, we implement and run all algorithms in MATLAB

version 7.7.0 (R2008b) (see Mathworks, 2009) on a 3.73 GHz PC using Windows XP

SP3, with 3 GB of RAM. All QPs are solved using TOMLAB CPLEX version 7.0

(R7.0.0) (see Tomlab, 2009) with the Primal Simplex option. In Step 2 of Algorithm

III.3, we use TOMLAB SNOPT version 7.2-5 (see Gill, Murray, & Saunders, 2007)

to find the y-maximizer.

In Chapter II, we consider problem instances with uncertainty dimension of

one, and we use discretization parameters N in the order of 106 to achieve reasonable

solution tolerance. In all the finite minimax algorithms considered (including SQP-

2QP and ϵ-PPP), one of the steps is to compute the function values at all the grid

points at the current iterate. In Chapter II, we implement the function evaluation

step using vector operations on all the grid points in a single line of code, instead

of “looping” through each grid point, to ensure better efficiency. In this chapter, we

consider problems with uncertainty dimensions higher than one, and the discretization

parameters required to achieve reasonable solution tolerance increase to orders of 108

and above. This requires too much memory if the same implementation as that in

99

Chapter II is used. Thus, we use “looping,” evaluating subsets of the grid points in

each loop. The different implementation is applied for SProbB (m = 2) and SProbC

(m = 3), since the original more efficient implementation still works for SProbA

(m = 1). Note that this issue does not affect ϵ-subgradient algorithms as they do not

deal with grid points.

We report run times to achieve a solution x that satisfies

∥x− xtarget∥ ≤ t, (III.147)

where the error tolerance t = 10−1, 10−2, 10−3, 10−4, 10−5, and xtarget is a target solu-

tion (see Table 18 in Appendix C) obtained by Algorithm III.3. We refer to Appendix

C for details on the procedure to obtain xtarget. Algorithm III.3 is chosen for these ver-

ification analysis as preliminary experiments show that it is significantly more efficient

than the other two algorithms, especially for problems with uncertainty dimension

m ≥ 2. Although the termination criterion (III.147) is not possible for real-world

problems, as xtarget is usually unknown beforehand, we find that it is the most useful

criterion in this study.

1. Problem Instance of Uncertainty Dimension One

Table 8 summarizes the run times (in seconds) of Algorithm III.1 with ϵ-PPP,

for various discretization parameter Nb across the top row, to achieve various error

tolerances t listed in the first column. Run times in boldface indicate the particular

discretization parameter Nb that produces the shortest run time for the specific error

tolerance t. An asterisk * in the table indicates that the particular discretization

parameter is insufficient to achieve the desired error tolerance. For example, in Table

8 with Nb = 1, 000, we observe that the iterates do not change after a certain time

(within six hours), and the required error tolerance of t = 10−4 has not been met.

A double asterisks ** indicate that the algorithm failed to satisfy the required error

tolerance after six hours. Preliminary experiments show that Algorithm III.3 produces

run times no slower than ten seconds for all problem instances considered. Thus,

100

we choose an arbitrary maximum run time of six hours (significantly longer than

ten seconds). As mentioned, the MATLAB implementation for ϵ-PPP on SProbA

computes the function values in a single line of code. As there is insufficient memory

to store the function values of allNb =100,000,000 functions, that leads to the memory

issues as indicated by “mem” in Table 8.

t\Nb 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

10−1 0.83 (7) 0.57 (7) 0.66 (7) 1.6 (7) 11.4 (7) 107.6 (7) mem
10−2 0.84 (10) 0.77 (10) 0.98 (10) 2.2 (10) 15.8 (10) 149.0 (10) mem
10−3 * 2.2 (13) 1.5 (12) 3.9 (12) 22.4 (12) 207.1 (12) mem
10−4 * * 4.5 (15) 9.1 (15) 36.7 (14) 334.7 (14) mem
10−5 * * * ** ** ** mem

Table 8. Run times (in seconds) for SProbA using Algorithm III.1 with ϵ-PPP. The
numbers in parentheses indicate the number of iterations. An asterisk * indicates
that the particular discretization parameter is insufficient to achieve the desired error
tolerance, while a double asterisk ** indicates that (III.147) is not satisfied after six
hours. The word “mem” means that the algorithm terminates due to insufficient
memory.

Table 9 summarizes the run times of Algorithm III.1 with SQP-2QP. The faster

run times in Table 9 compared to Table 8 are due to the superlinear rate of convergence

of the SQP-2QP algorithm map compared to the linear rate of convergence of ϵ-PPP.

We see from Tables 8 and 9, as well as subsequent run times for SProbB and

SProbC that the discretization parameter Nb that produces the fastest run times,

varies between problems and tolerances. Thus, it is difficult to determine the “right”

discretization parameter to use.

Table 10 summarizes the run times of Algorithm III.3 for SProbA. Comparing

the run times for the three algorithms (ignoring the issue that discretization param-

eters are difficult to determine), we see that the discretization algorithms (Tables 8

and 9) are generally competitive against the ϵ-subgradient algorithm (Table 10) for

problems with uncertainty dimension of one.

101

t\Nb 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

10−1 0.12 (5) 0.14 (5) 0.11 (5) 0.51 (5) 4.4 (5) 42.6 (5) mem

10−2 0.17 (6) 0.18 (6) 0.12 (6) 0.59 (6) 5.1 (6) 48.8 (6) mem

10−3 * 0.15 (7) 0.13 (7) 0.65 (7) 5.7 (7) 55.1 (7) mem

10−4 * * 0.13 (8) 0.81 (8) 6.4 (8) 61.4 (8) mem

10−5 * * * * * * mem

Table 9. Run times (in seconds) for SProbA using Algorithm III.1 with SQP-2QP.
The numbers in parentheses indicate the number of iterations. An asterisk * indicates
that the particular discretization parameter is insufficient to achieve the desired error
tolerance. The word “mem” means that the algorithm terminates due to insufficient
memory.

t 10−1 10−2 10−3 10−4 10−5

Run times 0.18 (2) 0.25 (3) 0.36 (4) 0.34 (5) 0.45 (6)

Table 10. Run times (in seconds) for SProbA using Algorithm III.3. The numbers in
parentheses indicate the number of iterations.

2. Problem Instance of Uncertainty Dimension Two

Tables 11-13 summarize the run times for SProbB. The discretization param-

eter Nb is chosen such that N
1/m
b ∈ N. The run times for the two discretization

algorithms are generally an order of magnitude slower than those for SProbA, while

the run times for Algorithm III.3 are still within the same order of magnitude. These

results provide some validation to the b−1/mν rate of decay of error bound obtained

for the two discretization algorithms in Theorems III.9 and III.11, and the b−1/2 rate

for Algorithm III.3 in Theorem III.29.

3. Problem Instance of Uncertainty Dimension Three

Tables 14-16 summarize the run times for SProbC. We see more evidence

of the independence of the rate of decay of error bound on m for Algorithm III.3.

Specifically, the ratio of run times for Algorithm III.3 to attain error tolerances of

10−1 and 10−5 are 0.45/0.18 = 2.5 (SProbA where m = 1), 1.1/0.21 = 5.2 (SProbB

where m = 2), and 4.0/1.6 = 2.5 (SProbC where m = 3). These ratios provide some

102

t\Nb 1,024 10,000 100,489 1,000,000 10,004,569 100,000,000 1,000,014,129

10−1 2.5 (5) 1.5 (5) 4.9 (5) 29.6 (5) 281.9 (5) 2720 (5) **
10−2 * 2.0 (6) 6.2 (7) 39.6 (7) 380.8 (7) 3605 (7) **
10−3 * * * 49.9 (9) 535.1 (9) 4720 (9) **
10−4 * * * 49.4 (9) 670.1 (10) 6899 (11) **
10−5 * * * * * ** **

Table 11. Run times (in seconds) for SProbB using Algorithm III.1 with ϵ-PPP. The
numbers in parentheses indicate the number of iterations. An asterisk * indicates
that the particular discretization parameter is insufficient to achieve the desired error
tolerance, while a double asterisk ** indicates that (III.147) is not satisfied after six
hours.

t\Nb 1,024 10,000 100,489 1,000,000 10,004,569 100,000,000 1,000,014,129

10−1 0.72 (4) 0.46 (4) 2.3 (5) 12.4 (4) 134.4 (5) 1146 (4) 10879 (5)
10−2 * 0.53 (5) 2.5 (6) 14.4 (5) 155.2 (6) 1346 (5) 12475 (6)
10−3 * * * 16.7 (6) 175.6 (7) 1532 (6) 13881 (7)
10−4 * * * * * 1719 (7) 15178 (8)
10−5 * * * * * * *

Table 12. Run times (in seconds) for SProbB using Algorithm III.1 with SQP-2QP.
The numbers in parentheses indicate the number of iterations. An asterisk * indicates
that the particular discretization parameter is insufficient to achieve the desired error
tolerance.

t 10−1 10−2 10−3 10−4 10−5

Run times 0.21 (5) 0.35 (7) 0.40 (8) 0.71 (9) 1.1 (9)

Table 13. Run times (in seconds) for SProbB using Algorithm III.3. The numbers in
parentheses indicate the number of iterations.

103

validation to Theorem III.29, which states that the asymptotic rate of decay of error

bound for Algorithm III.3 is b−1/2, which is independent of m.

For discretization algorithms, we see that the increase is strongly dependent

on m. For Algorithm III.1 with ϵ-PPP, the ratio of run times to attain error toler-

ances of 10−1 and 10−4 are 4.5/0.57 = 7.9 (SProbA), 49.4/1.5 = 32.9 (SProbB), and

> 21, 600/1.4 = 15, 000 (SProbC). For Algorithm III.1 with SQP-2QP, the ratio of

run times to attain error tolerances of 10−1 and 10−4 are 0.13/0.11 = 1.2 (SProbA),

1, 719/0.46 = 3, 737 (SProbB), and > 21, 600/0.81 = 26, 667 (SProbC). These ob-

servations indicate that the additional computational work to achieve smaller errors

increases asm increases, which again provides validation to Theorems III.9 and III.11,

which states that the asymptotic rate of decay of error bounds for Algorithm III.1

with ϵ-PPP and SQP-2QP are b−1/mν .

Theorems III.9 and III.11 state that the error bounds for the discretization

algorithms with a quadratically and linearly convergent algorithm map decay at the

same asymptotic rate of b−1/mν as b→ ∞. We observe generally faster run times for

Algorithm III.1 with SQP-2QP (superlinear) as compared to ϵ-PPP (linear), which

shows that we are not in asymptotic regime yet.

t\Nb 1,000 10,648 103,823 1,000,000 10,077,696 100,544,625 1,000,000,000

10−1 1.4 (5) 3.0 (4) 13.3 (4) 74.4 (4) 491.3 (4) 3706 (4) **
10−2 * * 20.8 (7) 113.0 (7) 860.5 (8) 6017 (7) **
10−3 * * * ** 2393 (13) 10546 (10) **
10−4 * * * ** ** ** **
10−5 * * * ** ** ** **

Table 14. Run times (in seconds) for SProbC using Algorithm III.1 with ϵ-PPP. The
numbers in parentheses indicate the number of iterations. An asterisk * indicates
that the particular discretization parameter is insufficient to achieve the desired error
tolerance, while a double asterisk ** indicates that (III.147) is not satisfied after six
hours.

104

t\Nb 1,000 10,648 103,823 1,000,000 10,077,696 100,544,625 1,000,000,000

10−1 0.81 (5) 2.2 (5) 11.3 (5) 59.6 (5) 429.9 (5) 4871 (5) **
10−2 * * 12.9 (6) 69.5 (6) 570.7 (6) 5658 (6) **
10−3 * * * * 665.7 (8) 7052 (8) **
10−4 * * * * * * **
10−5 * * * * * * **

Table 15. Run times (in seconds) for SProbC using Algorithm III.1 with SQP-2QP.
The numbers in parentheses indicate the number of iterations. An asterisk * indicates
that the particular discretization parameter is insufficient to achieve the desired error
tolerance, while a double asterisk ** indicates that (III.147) is not satisfied after six
hours.

t 10−1 10−2 10−3 10−4 10−5

Run times 1.6 (13) 1.8 (21) 2.7 (29) 3.9 (37) 4.0 (44)

Table 16. Run times (in seconds) for SProbC using Algorithm III.3. The numbers in
parentheses indicate the number of iterations.

E. CONCLUSIONS FOR SEMI-INFINITE MINIMAX

This chapter focuses on the discretization approach to solve unconstrained

semi-infinite minimax problems. We develop and compare rate-of-convergence results

for various fixed and adaptive discretization algorithms, as well as an ϵ-subgradient

algorithm. We present a novel way of expressing rate of convergence, in terms of

computational work instead of the typical number of iterations. We show that a fixed

discretization algorithm can achieve the same asymptotic convergence rate attained

by an adaptive discretization algorithm. We also show that under certain convexity-

concavity assumptions, the rates of convergence for discretization algorithms depend

on the uncertainty dimension, while the rate of convergence for an ϵ-subgradient

algorithm is independent of the uncertainty dimension. This indicates that under

convexity-concavity assumptions, discretization algorithms are not likely to be com-

petitive with ϵ-subgradient algorithms for problems with large uncertainty dimension.

105

Numerical results show that for convex-concave problems, discretization algorithms

are not competitive with ϵ-subgradient algorithms for problems with uncertainty di-

mension as small as two.

106

IV. SEMI-INFINITE MIN-MAX-MIN

PROBLEM

A. INTRODUCTION

In this chapter, we consider a generalized semi-finite min-max-min problem of

the form

(GMXM) min
x∈X

ψ(x), (IV.1)

where ψ : Rd → R is defined by

ψ(x)
△
= max

y∈Y
min

z∈Z(x,y)
ϕ(x, y, z), (IV.2)

X ⊂ Rd and Y ⊂ Rm are compact sets, the set-valued function Z : Rd × Rm → 2R
s

is continuous (see Section 5.3 of Polak, 1997 for a definition on the continuity of a

set-valued function) as well as compact- and nonempty-valued on X × Y , and for all

(x, y) ∈ X × Y and z ∈ Z(x, y), ϕ(·, ·, ·) is continuous at (x, y, z). In particular, we

focus on the special case where Z(·, ·) is a constant set Z ⊂ Rs, but also deal with the

generalized Z(·, ·) case. Throughout the chapter, we refer to the case with constant

set Z as the constant Z case, and the case of the set-valued function Z(·, ·) as the

variable Z case. We denote the semi-infinite min-max-min problem for the constant

Z case by (SMXM). Also, we refer to (SMXM) and (GMXM) collectively as (MXM)

for brevity.

Applications involving min-max-min optimization include floorplan sizing in

electronic circuit boards (Chen & Fan, 1998), obstacle avoidance for robots (Kirjner-

Neto & Polak, 1998), optimal design centering, tolerancing and tuning problem (Tits,

1985), geometric facility location problem (Cardinal & Langerman, 2006), and net-

work interdiction problem (Martin, 2007), of which we will give an example.

The problem (MXM) is difficult to solve due to the layers of min and max

operators, and, as shown in Ralph and Polak (2000), ψ(·) may not have directional

derivatives even when ϕ(·, ·, ·) is smooth. This implies that defining suitable optimal-

107

ity conditions is difficult. These difficulties have resulted in a rather limited literature

on (SMXM), and so far, there is no solution approach for (GMXM).

Ralph and Polak (2000) propose an approach that deals with (SMXM), mainly

with X = Rd. The assumptions are (i) X, Y , and Z are compact, and (ii) for all

(y, z) ∈ Y × Z, ϕ(·, y, z) is continuously differentiable on X. The authors first dis-

cretize Y and Z into YN and ZM , where N,M ∈ N are the cardinality of YN and

ZM , respectively. Then a master algorithm is used to solve sequences of discretized

min-max-min problems of increasing level of discretization. The finite min-max-min

algorithm map used to solve the discretized problems (within the master algorithm)

applies a method that combines an Armijo-type line search and a trust region ap-

proach. The authors then discuss how an exact penalization method can be used

to eliminate constraints defining X, if any are present. The main challenge in the

approach is, in each iteration of the algorithm map, we need to solve MN linear pro-

grams to determine the search direction. As noted in the paper, this is expected to

be a highly computationally intensive task. There are no numerical results in this

paper.

In Ralph and Polak (2000), we find another approach for (SMXM) with

X = Rd, where the same assumptions and initial discretization step in Ralph and

Polak (2000) are used. The author then applies exponential smoothing (as described

in Chapter II) to the innermost minimization problem to obtain a finite minimax

problem. The algorithm proposed also consists of a master algorithm that solves se-

quences of the finite minimax problems with increasing level of discretization, using

the Pshenichnyi-Pironneau-Polak (PPP) minimax algorithm map. The main chal-

lenge in this algorithm is, as the level of discretization increases, there are more

functions in ZM . In order to keep the smoothing error small, the smoothing pa-

rameter needs to increase, which may lead to ill-conditioning. Again, there are no

numerical results in this paper to provide any hint on the numerical performance of

the algorithm.

108

This chapter proposes a novel approach to solve (MXM). We assume that (i)

X and Z are compact and convex, and (ii) for all y ∈ Y , ϕ(·, y, ·) is continuously

differentiable and convex on X × Z. We discretize Y into YN to obtain a discretized

min-max-min problem, which we then reformulate into a discretized min-min-max

problem of larger dimensionality. Finally, we observe that the discretized min-min-

max problem can be interpreted as a constrained finite minimax problem. Under

our convexity assumptions, we show that for any N ∈ N, if we solve the constrained

finite minimax problem, we obtain a global minimizer of the discretized min-max-

min problem. And if the level of discretization N increases to infinity, the points

constructed approach the global minimizer of (MXM). The algorithms in Ralph and

Polak (2000) and Polak (2003) do not guarantee convergence to a global minimizer

even under our convexity assumptions. The main challenge in our approach is the

size of the constrained finite minimax problem constructed, which has N functions

and d+Ns variables, where d and s are the dimensionality of X and Z, respectively.

We find similar conversion from a min-max-min problem to a min-min-max

problem in Martin (2007) for the case with binary variables in the outer min-max,

where the min-min-max problem provides a lower bound on the optimal objective-

function value. Another possible way of converting a min-max-min problem into a

min-min-max problem is to use von Neuman’s minimax theorem (see for example,

Theorem 5.5.5 of Polak, 1997), but this requires that the sets Y and Z be compact,

convex, and constant, and for all x ∈ X and z ∈ Z, ϕ(x, ·, z) is concave on Y , and

for all x ∈ X and y ∈ Y , ϕ(x, y, ·) is convex on Z.

The next section shows that (MXM) arises in network interdiction problems.

Section C outlines a new approach to solve (MXM). We obtain some numerical results

in Section D by applying the approach on a network interdiction problem. Section E

concludes the chapter.

109

B. DEFENDER-ATTACKER-DEFENDER EXAMPLE

In this section, we describe a defender-attacker-defender (DAD) network in-

terdiction problem. We provide two different formulations for the problem, one in

the form of (SMXM) and another in the form of (GMXM).

We consider a network G with node set V and arc set E. A node u ∈ V can

provide nonnegative supply up to a maximum of ubsupplyu at the cost of costsupplyu

per unit of supply. Node u requires also a given demandu of supplies. A defender first

decides how much supply to place at node u, which we denote by SUPPLYu.

Second, an attacker decides on the quantity of sorties, SORTIEu,v to attack

each arc (u, v) ∈ E, subject to a maximum of totalsorties, with the intent to maximize

the defender’s cost to be defined later. We use an exponential damage function; see

for example Nugent (1969); Capps (1970), to model the capacity reduction of an arc

that is attacked. We consider SORTIEu,v as a continuous variable as we assume that

aircraft carry bomb loads that can be distributed in any way over several arcs. Note

that our proposed approach can handle integer restrictions on the decision variables

for the maximization in (MXM), which is SORTIEu,v in the DAD problem.

Third, the defender sends flow of supplies between nodes in an attempt to

meet demand. The parameters lbflowu,v and ubflowu,v represent the lower and upper

bounds on the flow across arc (u, v) before the attack, and vulcapu,v represents the

amount of capacity vulnerable to attack for arc (u, v). Based on Nugent (1969); Capps

(1970), the remaining capacity of arc (u, v) after the attack is:

ubflowu,v − vulcapu,v [1− exp(−vulu,vSORTIEu,v)] , (IV.3)

where vulu,v represents the vulnerability of arc (u, v). A larger value of vulu,v repre-

sents that the arc is more vulnerable to attacks. The vulnerability parameter vulu,v

indicates the efficiency of a sortie against arc (u, v).

The objective function in the problem is the sum of (i) the cost to place supply

at nodes and (ii) the cost to send flow through the network after the attack to satisfy

demands. We model the nonlinear effects of congestion on the cost of sending flow

110

(see for example p. 651 of Ahuja, Magnanti, & Orlin, 1993) across arc (u, v) by

costflowu,vFLOWu,v

ubflowu,v − FLOW u,v + ϵ
, (IV.4)

where ϵ > 0 is a small number to ensure that the cost of flow remains bounded as

FLOWu,v approaches ubflowu,v.

In this problem, we assume perfect information, i.e., both the defender and

attacker know the full characteristics of the network in terms of bounds on the flow

on each arc, the vulnerability of each arc, etc. We also assume that the defender

knows the maximum sorties that the attacker can launch, the attacker knows where

the supplies are placed before launching the sorties, and finally, the defender knows

the remaining capacity of all the arcs in the network before sending flow to satisfy

the demands.

We provide the formulation in both forms of (SMXM) and (GMXM) next, with

detailed explanation following the model descriptions. In (SMXM), the feasible region

of the inner minimization problem must be independent of the decision variables for

the outer minimization and the maximization parts. Hence, the capacity and balance

of flow constraints are accounted for, by using penalty terms in the objective function.

In the case of (GMXM), capacity and balance of flow are imposed as constraints.

Indices

u ∈ V node (alias v)
(u, v) ∈ E arc directed from node u to node v

Data

costsupplyu cost to place supply at node u
costflowu,v cost coefficient for flow between nodes u and v
demandu demand at node u
ϵ a small number that ensures bounded flow cost
lbflowu,v nonnegative lower bound on flow on arc (u, v)
penbal penalty parameter for violation of flow balance constraints
pencap penalty parameter for violation of capacity constraints
totalsorties total number of attacker sorties the attacker can fly

111

ubflowu,v upper bound on flow on arc (u, v)
ubsupplyu upper bound on supplies at node u
vulu,v vulnerability of arc (u, v)
vulcapu,v amount of capacity of arc (u, v) vulnerable to attack

Decision Variables

EXCESSSUPPLYu recourse supply removed from node u
EXTRASUPPLYu recourse supply placed at node u
FLOWu,v flow from node u to node v
SORTIEu,v number of sorties to attack arc (u, v)
SUPPLYu amount of supply to be placed at node u

We denote the vector that contains all the components FLOWu,v, (u, v) ∈ E by

FLOW, and similarly for EXCESSSUPPLY, EXTRASUPPLY, SORTIE, and SUP-

PLY.

DAD Formulation of the form (SMXM): constant Z case

min
SUPPLY



max
SORTIE



min
FLOW

∑
u∈V

costsupplyuSUPPLY u +
∑

(u,v)∈E

costflowu,vFLOWu,v

ubflowu,v − FLOW u,v + ϵ

+
∑
u∈V

penbalu

 ∑
v:(u,v)∈E

FLOW u,v −
∑

v:(v,u)∈E

FLOW v,u

− SUPPLY u + demandu

2

+
∑

(u,v)∈E

pencapu,v

max


0,

FLOW u,v − ubflowu,v+

vulcapu,v [1− exp(−vulu,vSORTIEu,v)]



2

s.t. lbflowu,v ≤ FLOW u,v ≤ ubflowu,v ∀(u, v) ∈ E


s.t.

∑
(u,v)∈E

SORTIEu,v ≤ totalsorties

SORTIEu,v ≥ 0 ∀(u, v) ∈ E


s.t. 0 ≤ SUPPLY u ≤ ubsupplyu ∀u ∈ V

112

DAD Formulation of the form (GMXM): variable Z case

min
SUPPLY



max
SORTIE



min
FLOW ,EXCESSSUPPLY ,

EXTRASUPPLY

∑
u∈V

costsupplyuSUPPLY u +
∑

(u,v)∈E

costflowu,vFLOW u,v

ubflowu,v − FLOW u,v + ϵ

+
∑
u∈V

penbaluEXCESSSUPPLY u +
∑
u∈V

penbaluEXTRASUPPLY u

s.t.
∑

v:(u,v)∈E

FLOW u,v −
∑

v:(v,u)∈E

FLOW v,u = SUPPLY u − demandu

− EXCESSSUPPLY u + EXTRASUPPLY u ∀u ∈ V

lbflowu,v ≤ FLOW u,v

≤ ubflowu,v − vulcapu,v [1− exp(−vulu,vSORTIEu,v)] ∀(u, v) ∈ E

EXCESSSUPPLY u ≥ 0 ∀u ∈ V

EXTRASUPPLY u ≥ 0 ∀u ∈ V


s.t.

∑
(u,v)∈E

SORTIEu,v ≤ totalsorties

SORTIEu,v ≥ 0 ∀(u, v) ∈ E


s.t. 0 ≤ SUPPLY u ≤ ubsupplyu ∀u ∈ V

Discussion

The main differences between the two formulations lie in the way that the

capacity and balance of flow constraints are modeled. In the variable Z case, we model

them explicitly. The dummy variables EXCESSSUPPLY and EXTRASUPPLY are

included to ensure that the model remains feasible even if the sorties have reduced

the capacity of the network to a level where (i) excess supply cannot flow out from a

node or (ii) demand at a node is not fully satisfied. And if that happens, we penalize

the violation based on (i) the excess supply that needs to be removed or (ii) the extra

supply required to satisfy demand fully.

For the constant Z formulation, we model the capacity and balance of flow

constraints by including penalty cost terms in the objective function. This allows

us to have the inner constraint set being a constant set defined by 0 ≤ lbflowu,v ≤

FLOW u,v ≤ ubflowu,v for all arcs (u, v) ∈ E.

The objective functions for both cases express the sum of (i) the cost of placing

supply at supply nodes, (ii) cost of sending flow through the network after the attack

to satisfy demands, considering congestion effects, and (iii) penalty terms for violation

of capacity or balance of flow constraints. The other constraints are self-explanatory.

We note that if we view SORTIEu,v as constants instead of decision variables,

the objective functions and feasible sets in both formulations are convex, and the

113

feasible region is defined by linear functions and box constraints. We will revisit this

issue when we discuss our new approach to solve (MXM).

C. APPROACH TO SOLVE THE MIN-MAX-MIN PROB-
LEM

In this section, we propose an approach to solve (MXM) by constructing a

constrained finite minimax problem. We use this finite minimax problem to obtain

an approximation to a global minimizer of (MXM) under certain assumptions on the

algorithm used to solve the finite minimax problem.

Before we describe the approach to solve (MXM), we state two assumptions

for Z that will be used repeatedly throughout the chapter. Assumption IV.1 will be

used when we consider the constant Z case, while Assumption IV.2 will be used when

we consider the variable Z case.

Assumption IV.1. X ⊂ Rd, Y ⊂ Rm, and Z ⊂ Rs are compact sets, and ϕ(·, ·, ·) is

continuous on X × Y × Z.

Assumption IV.2. X ⊂ Rd and Y ⊂ Rm are compact sets, the set-valued function

Z : Rd×Rm → 2R
s
is continuous as well as compact- and nonempty-valued on X×Y ,

and for all (x, y) ∈ X × Y and z ∈ Z(x, y), ϕ(·, ·, ·) is continuous at (x, y, z).

1. Constructing a Finite Minimax Problem

In this subsection, we construct a finite minimax problem from (MXM). We

first discretize the set Y ⊂ Rm to obtain a discretized min-max-min problem. Next,

we show that the inner max-min problem is equivalent to a min-max problem. We

then observe that the min-min-max problem can be interpreted as a finite minimax

problem, but with more variables than (MXM). We cover the details next.

a. Discretized Min-Max-Min Problem

We introduce the discretized problem for (GMXM):

(GMXMN) min
x∈X

ψN(x), (IV.5)

114

where ψN : Rd → R, N ∈ N is defined by

ψN(x)
△
= max

y∈YN

min
z∈Z(x,y)

ϕ(x, y, z), (IV.6)

YN ⊂ Y , |YN | = N ∈ N, satisfy the property dist(YN , Y) → 0 as N → ∞, with

dist(·, ·) being the Hausdorff distance operator defined on p. 65. Under Assumption

IV.2, (GMXMN) is well-defined. An example of a discretization scheme that produces

YN with the above property is the uniform grid discussed on p. 65 for the case when

Y is a hyper-box. We denote the equivalent discretized problem for (SMXM) by

(SMXMN).

We need the following notation for subsequent analysis of (GMXM):

ω(x, y)
△
= min

z∈Z(x,y)
ϕ(x, y, z), (IV.7)

Ẑ(x, y)
△
= {z ∈ Z(x, y) | ϕ(x, y, z) = ω(x, y)} , (IV.8)

Ŷ (x)
△
= {y ∈ Y | ω(x, y) = ψ(x)} , (IV.9)

and

ŶN(x)
△
= {y ∈ YN | ω(x, y) = ψN(x)} . (IV.10)

We next show the continuity of the functions ω(·, ·), ψ(·), and ψN(·) for

both the constant and variable Z case.

Proposition IV.3. Suppose that Assumption IV.1 holds. Then the functions ω(·, ·),

ψ(·), and ψN(·), N ∈ N are continuous on X × Y and X, respectively.

Proof. We refer to Polak (1997, Section 5.4) for the proof.

Proposition IV.4. Suppose that Assumption IV.2 holds. Then the functions ω(·, ·),

ψ(·), and ψN(·), N ∈ N are continuous on X × Y and X, respectively.

Proof. Based on Corollary 5.4.2 of Polak (1997), ω(·, ·) is continuous on X × Y .

Hence, based on Propositions I.1 and I.2, ψ(·) and ψN(·) are also continuous on

X.

115

We next show that the discretized min-max-min problems epi-converge

to (MXM). We first consider the constant Z case.

Lemma IV.5. Suppose that Assumption IV.1 holds. The sequence of problems

{(SMXMN)}N∈N epi-converges to (SMXM) as N → ∞.

Proof. The proof follows the same arguments as the epi-convergence proof in Theo-

rem 5.2 of Polak (2003) and is included here for completeness. Suppose that {xN}N∈N

is a sequence in X such that xN → x̂ as N → ∞, and suppose that yN ∈ ŶN(xN) for

each N ∈ N. Without loss of generality, we assume that yN → ŷ as N → ∞. Then

lim sup
N→∞

ψN(xN) = lim
N→∞

ω(xN , yN) = ω(x̂, ŷ) ≤ ψ(x̂), (IV.11)

where we use the fact that ω(·, ·) is continuous; see Proposition IV.3.

Next, suppose that ψ(x̂) = ω(x̂, y∗) for some y∗ ∈ ŶN(x̂). Then since

dist(YN , Y) → 0 as N → ∞, there exists a y′N ∈ YN such that y′N → y∗. Hence,

lim inf
N→∞

ψN(xN) ≥ lim
N→∞

ω(xN , y
′
N) = ω(x̂, y∗) = ψ(x̂). (IV.12)

This proves that if xN → x̂ as N → ∞, then ψN(xN) → ψ(x̂). Based on Proposition

I.3, the conclusion follows.

Lemma IV.6. Suppose that Assumption IV.2 holds. The sequence of problems

{(GMXMN)}N∈N epi-converges to (GMXM) as N → ∞.

Proof. The proof follows the same arguments as the proof for Lemma IV.5, with

Proposition IV.4 replacing Proposition IV.3.

We next provide two theorems, which directly follow from the epi-

convergence of the discretized min-max-min problems to (MXM). Again, we first

consider the constant Z case before the variable Z case.

Theorem IV.7. Suppose that Assumption IV.1 holds. If {x̂N} is a sequence of

global minimizers of (SMXMN) and there exists an infinite subset K ∈ N such that

x̂N →K x̂ as N → ∞, then x̂ is a global minimizer of (SMXM), and ψN(x̂N) →K ψ(x̂)

as N → ∞.

116

Proof. The conclusion follows from Lemma IV.5 and Proposition I.4.

Theorem IV.8. Suppose that Assumption IV.2 holds. If {x̂N} is a sequence of global

minimizers of (GMXMN) and there exists an infinite subset K ∈ N such that x̂N →K

x̂ as N → ∞, then x̂ is a global minimizer of (GMXM), and ψN(x̂N) →K ψ(x̂) as

N → ∞.

Proof. The conclusion follows from Lemma IV.6 and Proposition I.4.

Theorem IV.7 imply that if we pick a large N ∈ N, and solve (SMXMN)

to obtain a global minimizer x̂N , then x̂N is an approximation to a global minimizer of

(SMXM). The same is true regarding Theorem IV.8. As (SMXMN) and (GMXMN)

are still difficult problems to solve, we reformulate them into finite minimax problems

next.

b. Equivalent Finite Minimax Problem

In this subsection, we first introduce a discretized min-min-max prob-

lem that we show is equivalent to the discretized min-max-min (GMXMN) in some

sense. We then show that the new min-min-max problem can be seen as a finite

minimax problem. To show the equivalence of this new min-min-max problem to

(GMXMN), we introduce some notational changes to (GMXMN).

Without loss of generality, we assume that YN = {y1, y2, ..., yN}, and

we re-express

ψN(x) = max
j∈N

min
z∈Z(x,yj)

φj(x, z), (IV.13)

where N △
= {1, 2, ..., N}, and the function φj : Rd × Rs → R, j ∈ N , is defined by

φj(x, z)
△
= ϕ(x, yj, z). (IV.14)

We now introduce the equivalent problem to (GMXMN):

(GMMXN) min
x∈X

ψ̄N(x), (IV.15)

117

where ψ̄N : Rd → R, N ∈ N, is defined by

ψ̄N(x)
△
= min

z̄∈ZN (x)
max
j∈N

φ̄j(x, z̄), (IV.16)

φ̄j : Rd × RNs → R, j ∈ N , is defined by

φ̄j(x, z̄)
△
= φj(x, zj), (IV.17)

z̄
△
= (zT1 , z

T
2 , ..., z

T
N)

T , zj ∈ Z(x, yj) for all j ∈ N , and ZN(x)
△
= Z(x, y1) × Z(x, y2) ×

... × Z(x, yN). In order to allow for the exchange of the min and max operators, we

introduce a z variable for each y ∈ YN . This expands the dimension of z by a factor

of N . We denote the equivalent discretized min-min-max problem for (SMXM) by

(SMMXN).

The next result proves the equivalence of the new discretized min-min-

max problem to the discretized min-max-min problem. We first consider the constant

Z case. We define ZN △
= Z × Z × ...× Z.

Theorem IV.9. Suppose that Assumption IV.1 holds. Then for all N ∈ N and

x ∈ X, ψ̄N(x) = ψN(x).

Proof. For all x ∈ X and j ∈ N , since φj(x, ·) is continuous on Z and Z is compact,

there exists a zj(x) ∈ Z such that

φj(x, zj(x)) = min
z∈Z

φj(x, z). (IV.18)

We define z̄(x)
△
= (z1(x)

T , z2(x)
T , ..., zN(x)

T)T . Then

ψN(x) = max
j∈N

φj(x, zj(x))

= min
z̄∈ZN ,z̄=z̄(x)

max
j∈N

φ̄j(x, z̄)

≥ min
z̄∈ZN

max
j∈N

φ̄j(x, z̄) = ψ̄N(x). (IV.19)

Next, for all x ∈ X, since maxj∈N φ̄j(x, ·) is continuous on ZN , and ZN is compact,

there exists a z̄(x) ∈ ZN such that

ψ̄N(x) = max
j∈N

φ̄j(x, z̄(x)). (IV.20)

118

Then

ψ̄N(x) = max
j∈N

φj(x, zj(x))

= max
j∈N

min
z=zj(x),z∈Z

φj(x, z)

≥ max
j∈N

min
z∈Z

φj(x, z) = ψN(x). (IV.21)

The conclusion follows since ψ̄N(x) ≥ ψN(x) and ψN(x) ≥ ψ̄N(x).

We observe that the min-min-max problem (SMMXN) is a constrained

finite minimax problem of the form

(FMXN) min
w∈W

ΨN(w), (IV.22)

where

ΨN(w)
△
= max

j∈N
f j(w), (IV.23)

f j(w)
△
= φ̄j(x, z̄), (IV.24)

and w
△
= (xT , zT1 , z

T
2 , ..., z

T
N)

T ⊂ W
△
=X × ZN .

Note that we obtain the simpler finite minimax problem (FMXN) from

the discretized min-max-min (SMXMN) at the expense of a larger number of variables,

i.e., w ∈ Rd+Ns.

The results above are next generalized to the variable Z case.

Theorem IV.10. Suppose that Assumption IV.2 holds. Then for all N ∈ N and

x ∈ X, ψ̄N(x) = ψN(x).

Proof. The proof follows the same arguments as the proof for Theorem IV.9, with

obvious notational changes.

The generalized min-min-max problem (GMMXN) is also a constrained

finite minimax problem, with a form similar to (FMXN) defined in (IV.22)-(IV.24),

except that the set W is replaced by Wx
△
= {(x, z̄) ∈ Rd × RNs | x ∈ X, z̄ ∈ ZN(x)}.

We denote the constrained finite minimax problem for (GMXM) as (GFMXN).

We next propose an algorithm that produces an approximation to a

global minimizer of (MXM) by solving the constructed finite minimax problem.

119

2. Algorithm for Semi-Infinite Min-Max-Min

In this subsection, under the assumption that there exists a constrained finite

minimax algorithm that produces a global minimizer of (FMXN), we propose an

algorithm that obtains a point that is close to a global minimizer of (SMXM). We

describe a constrained finite minimax algorithm that satisfies the assumption in the

numerical section. In this subsection, we only consider the constant Z case, however,

all the results equally apply to the variable Z case.

From this point on, we refer to those algorithms that are applied to solve

(FMXN), N ∈ N, as algorithm maps, to differentiate them from the overall algo-

rithm for (SMXM). We develop the convergence results of our approach based on a

constrained finite minimax algorithm map that satisfies the following assumption.

Assumption IV.11. Suppose that Assumption IV.1 holds. Given an N ∈ N, the

algorithm map applied to solve (FMXN) generates a sequence {wi}∞i=0 ⊂ X×ZN , and

every accumulation point of that sequence is a global minimizer of (FMXN).

In view of the above results, the following algorithm for (SMXM) is simple.

Algorithm IV.1. Semi-Infinite Min-Max-Min Algorithm

Parameter: N ∈ N.

Step 1. Generate a sequence {wi}∞i=0 by applying a constrained finite minimax

algorithm map that satisfies Assumption IV.11 to (FMXN).

The next theorem implies that if we choose a high level of discretization, i.e.,

large N , then from every accumulation point of the sequence generated, we can easily

construct a point that is a global minimizer of the discretized min-max-min problem

(SMXMN). Thus, if the level of discretization N increases to infinity, the points

constructed approach the global minimizer of the original semi-infinite min-max-min

problem (SMXM), due to Theorem IV.7.

Theorem IV.12. Suppose that Assumption IV.1 holds, and that Algorithm IV.1 is

applied to solve (SMXM) with a given N ∈ N, and it generates a sequence {wi}∞i=0 ⊂

120

X × ZN . If w∗ = (x∗, z̄∗) with x∗ ∈ X and z̄∗ ∈ ZN , is an accumulation point of

{wi}∞i=0, then x
∗ is a global minimizer of (SMXMN).

Proof. The conclusion follows directly from Theorem IV.9.

D. NUMERICAL RESULTS

In this section, we apply our approach on a DAD problem with a ten-node 18-

arc network as shown in Figure 2. The problem parameters, e.g., ubsupplyu, demandu,

and totalsorties are obtained by uniform random number generators based on bounds

that we provide. We set the bounds in such a way that more supply can be placed

at nodes 1-5 than 6-10, while the demands are higher at nodes 6-10 than 1-5. This

ensures that we have flow from the left-hand side of the network to the right-hand

side. We refer to Appendix E for the problem parameters generated and used in this

study. We use a discretization level of N =1,000, i.e., we consider 1,000 randomly-

generated attack plans. Each attack plan provides the sorties to launch against the

18 arcs.

We solve the constrained finite minimax problem constructed in our approach

by reformulating it into a standard nonlinear constrained problem and solving it

using a sequential quadratic program (SQP) algorithm. We implement and run the

algorithm in MATLAB version 7.10 (R2010a) (see Mathworks, 2009) on a 3.46 GHz

PC with two quad-core processors, using Windows 7 Pro, with 24 GB of RAM. We

use the SQP algorithm in TOMLAB SNOPT solver, see Gill et al. (2007).

For our problem with ten nodes and 18 arcs, and a discretization level N =

1, 000, (FMXN) has 1,000 functions and approximately 18,000 variables, and takes ap-

proximately 4.5 hours, while the (GFMXN)) has 11,000 functions and approximately

38,000 variables, and takes approximately 1.5 hours. The smaller (FMXN) requires

a longer run time because there are more nonlinear components in its formulation,

where the balance of flow and capacity constraints have been modeled as nonlinear

penalty cost terms in the objective function.

121

We first discuss the results for (SMXM). We refer to Figure 2 for the solutions

obtained from solving (FMXN). The optimal supply solution and the required de-

mand are stated on the nodes. The supply numbers highlighted in red (specifically

those for nodes 6-10) indicate that the proposed supplies are at their ubsupplyu val-

ues. The worst-case attack plan is one that concentrates attack on arcs (4,6) and

(5,7), see the details on this attack plan in Appendix E. This worst-case attack plan

is reasonable based on the problem parameters, where more supply can be placed at

those nodes on the left-hand side of the network, while higher demands are required

at the nodes on the right-hand side. The optimal flow after the worst-case attack is

stated on the arcs, and the objective function value is 1,288.

Figure 2. Optimal Supply and Flow Solution for (SMXM).

The proposed supply sums up to 46.0. This is less than the total demand of

54.5. We develop another optimization model, which we refer to as the verification

122

model, to verify if the solution obtained from our approach is reasonable, and to

determine why the proposed supply is less than the total demand. When given an

arbitrary SUPPLY, the verification model runs through all 1,000 attack plans, and for

each attack plan, determines the optimal flow and associated objective function value.

We test the verification model with several alternative supply solutions that sum to

the required demand of 54.5, and obtain objective function values no smaller than

approximately 2,300. We conclude that the proposed supply is less than the total

demand because the sorties have reduced the capacity of the network to an extent

that any additional supply is unable to flow to satisfy any outstanding demand. Thus,

we do not gain any benefit by adding supply, and worse still, we incur the additional

cost of storing supply as well as incur penalty for balance of flow constraint violations

as the additional supply cannot flow out.

We next state the results for (GMXM). We refer to Figure 3 for the solutions

obtained from solving (GFMXN). The proposed supply is the same as that proposed

for (SMXM), except for the smaller supply placed at nodes 1, 4, and 5. The optimal

flow after the worst-case attack is stated on the arcs, and the objective function value

is 891, see the details on the attack plan in Appendix E. The objective function value

for (GMXM) is significantly different from that of (SMXM) as the two problems

have different objective functions. The worst-case attack and the optimal flow for

(GMXM) are significantly different from that of (SMXM).

E. CONCLUSIONS FOR SEMI-INFINITEMIN-MAX-MIN

This chapter focuses on the semi-infinite min-max-min problem. We propose

an approach that constructs a finite minimax problem with a larger dimensionality

than the original min-max-min problem, through discretization and reformulation of

the original problem. Our approach is the first to solve the generalized semi-infinite

min-max-min problem, and it also solves the semi-infinite min-max-min problem. The

numerical results show that the approach produces reasonable solutions.

123

Figure 3. Optimal Supply and Flow Solution for (GMXM).

124

V. CONCLUSIONS AND FUTURE

RESEARCH

A. CONCLUSIONS

Optimization problems with uncertain parameters arise in numerous applica-

tions. One possible approach to handle such problems is to consider the worst-case

value of the uncertain parameter during optimization. We consider three problems re-

sulting from this approach: a finite minimax problem (FMX), a semi-infinite minimax

problem (SMX), and a semi-infinite min-max-min problem (MXM). In all problems,

we consider nonlinear functions with continuous variables. We develop rate of conver-

gence and complexity results, and propose algorithms for solving these optimization

problems.

We develop rate of convergence and complexity results of smoothing algorithms

for solving (FMX) with many functions. We find that smoothing algorithms may only

have sublinear rates of convergence, but their complexity in the number of functions q

is O(q log q), as compared to O(q3) for the sequential quadratic programming (SQP)

algorithms, which our numerical results as well as those in the literature show to

be one of the fastest for solving (FMX). The competitive complexity for smoothing

algorithms is due to its small computational work per iteration. We present two

new smoothing algorithms for (FMX) with novel precision-adjustment schemes, and

show that they are competitive with other algorithms from the literature. They are

especially efficient for problems with many variables, or where a significant number

of functions are nearly active at stationary points. The new algorithms are easy to

implement and do not require any QP solver, which is required for algorithms such

as the SQP and Pshenichnyi-Pironneau-Polak (PPP) minimax algorithm. One of our

proposed precision-adjustment schemes is simpler and more efficient than the scheme

used in the existing smoothing algorithms, which provides a good alternative when

developing new smoothing algorithms. Our numerical results indicate that smoothing

125

with first-order gradient methods is likely the only viable approach to solve a (FMX)

with a large number q of functions and problem dimensionality d, due to memory

limitations. The SQP and PPP algorithms need to compute and provide the gradient

information (q × d matrix) to the QP solver, and so the size of the problem that

can be solved is limited by the memory required to store the q × d matrix, as well

as the memory required by the QP solver to process the gradient information. In

smoothing algorithms, we do not require the memory to store the full q×d matrix, as

the gradient of the smoothed function can be constructed by sequentially considering

portions of the gradient matrix.

For (SMX), we develop and compare rate of convergence results for various

fixed and adaptive discretization algorithms, as well as an ϵ-subgradient algorithm.

We present a novel way of expressing rate of convergence, in terms of computational

work instead of the typical number of iterations, which we use throughout the anal-

ysis of (SMX). Hence, we are able to identify algorithms that are competitive due

to low computational work per iteration even if they require many iterations. We

show that to solve (SMX), a fixed discretization algorithm with quadratically or lin-

early convergent algorithm map to solve the discretized problem can achieve the same

asymptotic convergence rate attained by an adaptive discretization method. Under

certain convexity-concavity assumptions, we show how the rate of convergence for dis-

cretization algorithms depend on the dimension of the uncertain parameters, while

ϵ-subgradient algorithms do not. This indicates that, under convexity-concavity as-

sumptions, discretization algorithms will not be competitive against ϵ-subgradient

algorithms for moderate to large dimension of the uncertain parameters. Our numer-

ical results show that discretization algorithms are not competitive to ϵ-subgradient

algorithms for convex-concave problems with a dimension of the uncertain parameters

as small as two.

We propose a new approach to solve (MXM), based on discretization and re-

formulation of (MXM) into a constrained finite minimax problem with a larger dimen-

126

sionality than the original (MXM). Our approach is the first to solve (GMXM) in the

literature, and it also solves (SMXM). We apply our approach to a defender-attacker-

defender network interdiction problem, and the results demonstrate the viability of

our approach.

B. FUTURE RESEARCH

There are several possibilities for extending the research of this dissertation.

The two smoothing algorithms developed for (FMX) in this dissertation produce a

working set that is monotonically increasing. The efficiency of the active-set SQP

algorithm shows the potential benefits of an aggressive active-set strategy that keeps

the working set small. However, when we implement the active-set strategy from the

SQP algorithm in our smoothing algorithms, we see slower run times, which indicates

that some kind of fine-tuning on the active-set strategy is probably required. Thus,

an extension would be to custom-fit an active-set strategy for smoothing algorithms.

Another opportunity for extension concerns the precision-adjustment scheme

in the smoothing algorithm for (FMX) that requires user-specified parameters. It

would be worthwhile to develop procedures for rationally selecting these parameters,

as it is difficult for users to come up with good choices for the parameters.

We show that the ϵ-subgradient algorithm has better rate of convergence for

solving (SMX) than discretization algorithm. However, the ϵ-subgradient algorithm

requires a concavity assumption to ensure that the computational work to obtain

an ϵ-maximizer (global maximum) for the uncertain parameters remains bounded.

Without the concavity assumption, it would be interesting to see how the rate of

convergence results for other algorithms such as the exchange algorithms compare to

discretization algorithms, since exchange algorithms will also need to implement some

form of discretization or branch-and-bound techniques to obtain a global maximizer

for the uncertain parameters.

Our approach to solve (MXM) constructs a constrained finite minimax problem

127

with a large number of functions and variables. The constructed problem has a

special structure, each function depends on only a small number of variables, the

same number as the sum of the number of variables in the innermost and outermost

minimization problem. It would be useful to develop special first-order algorithms

that utilize this special structure.

128

APPENDIX A. FINITE MINIMAX PROBLEMS

Table 17 describes the problem instances used for the numerical studies in

Chapter II. Most columns are self-explanatory. Columns 2 and 3 give the number

of variables d and functions q, respectively. The target values (Column 7) are equal

to the optimal values (if known) or a slightly adjusted value from the optimal values

reported in Polak et al. (2003); Zhou and Tits (1996) for smaller q. The same target

values are used for ProbA-ProbM in Tables 5 and 6.

In this appendix, we denote components of x ∈ Rd by subscripts, i.e., x =

(x1, x2, ..., xd) ∈ Rd. When the problem is given in semi-infinite form, as in (A.2a) -

(A.2i), the set Y is discretized into q equally spaced points if

ψ(x) = max
y∈Y

ϕ(x, y), (A.1a)

and q/2 equally spaced points if

ψ(x) = max
y∈Y

|ϕ(x, y)|. (A.1b)

ProbA is defined by (A.1a) and (A.2a), and ProbB-ProbI by (A.1b) and (A.2b)-(A.2i),

respectively.

ϕ(x, y) = (2y2 − 1)x+ y(1− y)(1− x), Y = [0, 1], (A.2a)

ϕ(x, y) = (1− y2)− (0.5x2 − 2yx), Y = [−1, 1], (A.2b)

ϕ(x, y) = y2 − (yx1 + x2 exp(y)), Y = [0, 2], (A.2c)

ϕ(x, y) =
1

1 + y
− x1 exp(yx2), Y = [−0.5, 0.5], (A.2d)

ϕ(x, y) = sin y − (y2x3 + yx2 + x1), Y = [0, 1], (A.2e)

ϕ(x, y) = exp(y)− x1 + yx2
1 + yx3

, Y = [0, 1], (A.2f)

129

ϕ(x, y) =
√
y − [x4 − (y2x1 + yx2 + x3)

2], Y = [0.25, 1], (A.2g)

ϕ(x, y) =
1

1 + y
− [x1 exp(yx3) + x2 exp(yx4)], Y = [−0.5, 0.5], (A.2h)

ϕ(x, y) =
1

1 + y
− [x1 exp(yx4) + x2 exp(yx5) + x3 exp(yx6)],

Y = [−0.5, 0.5], (A.2i)

ProbJ-ProbM are defined by ψ(x) = maxj∈Q f
j(x), with f j(x) as in (A.2j)-(A.2m),

respectively.

f j(x) = x2j , j = {1, ..., q}, (A.2j)

f j(x) = x2(j−1)2+1 + x22j, j = {1, ..., q}, (A.2k)

f j(x) = x2(j−1)4+1 + x2(j−1)4+2 + x2(j−1)4+3 + x24j, j = {1, ..., q}, (A.2l)

f j(x) = x2kj + x2lj , j =

{
1, 2, 3, ...,

(
d

2

)}
, (A.2m)

where (kj, lj) are all 2-combinations (see Section 3.3 of Brualdi 2004) of {1, 2, 3, ..., d},

and

f j(x) = ajx
2
i + bjxi + cj, j = {1, ..., q}, (A.2n)

where i =
⌈

j
q/d

⌉
, and aj, bj, cj are randomly generated from a uniform distribution on

[0.5, 1].

130

In
st
an

ce
d

q
ψ
(x
)

C
on

v
ex
it
y

In
it
ia
l
p
oi
n
t

T
ar
ge
t
va
lu
e

R
ef
.

P
ro
b
A

1
va
ri
es

(A
.1
a)
,
(A

.2
a)

C
on

ve
x

5
0.
17

83
94

2
P
ol
ak

et
a
l.
(2
0
0
3
)

P
ro
b
B

1
va
ri
es

(A
.1
b
),
(A

.2
b
)

N
on

-c
on

v
ex

1
1.
00

00
10

0
Z
h
ou

an
d
T
it
s
(1
9
9
6
)

P
ro
b
C

2
va
ri
es

(A
.1
b
),
(A

.2
c)

C
on

ve
x

(1
,1
)

0.
53

82
43

1
Z
h
ou

an
d
T
it
s
(1
9
9
6
)

P
ro
b
D

2
va
ri
es

(A
.1
b
),
(A

.2
d
)

N
on

-c
on

v
ex

(1
,−

1)
0.
08

71
53

4
Z
h
ou

an
d
T
it
s
(1
9
9
6
)

P
ro
b
E

3
va
ri
es

(A
.1
b
),
(A

.2
e)

C
on

ve
x

(1
,1
,1
)

0.
00

45
04

8
P
ol
ak

et
a
l.
(2
0
0
3
)

P
ro
b
F

3
va
ri
es

(A
.1
b
),
(A

.2
f)

N
on

-c
on

v
ex

(1
,1
,1
)

0.
00

42
94

6
Z
h
ou

an
d
T
it
s
(1
9
9
6
)

P
ro
b
G

4
va
ri
es

(A
.1
b
),
(A

.2
g)

N
on

-c
on

v
ex

(1
,1
,1
,1
)

0.
00

26
50

0
P
ol
ak

et
a
l.
(2
0
0
3
)

P
ro
b
H

4
va
ri
es

(A
.1
b
),
(A

.2
h
)

N
on

-c
on

v
ex

(1
,1
,−

3,
−
1)

0.
00

20
68

8
Z
h
ou

an
d
T
it
s
(1
9
9
6
)

P
ro
b
I

6
va
ri
es

(A
.1
b
),
(A

.2
i)

N
on

-c
on

v
ex

(1
,1
,1
,−

7,
−
3
,−

1)
0.
00

06
24

2
Z
h
ou

an
d
T
it
s
(1
9
9
6
)

P
ro
b
J

q
va
ri
es

(I
I.
2)
,
(A

.2
j)

C
on

ve
x

(
2 q
,
4 q
,
6 q
,.
..
,1
,−

1
−

2 q
,.
..
,−

2)
0

P
ol
ak

et
a
l.
(2
0
0
3
)

P
ro
b
K

2q
va
ri
es

(I
I.
2)
,
(A

.2
k
)

C
on

ve
x

(
1 q
,
2 q
,
3 q
,.
..
,1
,−

1
−

1 q
,.
..
,−

2)
0

P
ol
ak

et
a
l.
(2
0
0
3
)

P
ro
b
L

4q
va
ri
es

(I
I.
2)
,
(A

.2
l)

C
on

ve
x

(
1 2
q
,

2 2
q
,

3 2
q
,.
..
,1
,−

1
−

1 2
q
,.
..
,−

2)
0

P
ol
ak

et
a
l.
(2
0
0
3
)

P
ro
b
M

va
ri
es

(d 2

)
(I
I.
2)
,
(A

.2
m
)

C
on

ve
x

(
2 d
,
4 d
,
6 d
,.
..
,1
,−

1
−

2 d
,.
..
,−

2)
0

*
P
ro
b
N
(i
)

1
0

10
,0
00

(I
I.
2)
,
(A

.2
n
)

C
on

ve
x

(
2 d
,
4 d
,
6 d
,.
..
,1
,−

1
−

2 d
,.
..
,−

2)
0.
92

78
64

0
*

P
ro
b
N
(i
i)

1
00

10
,0
00

(I
I.
2)
,
(A

.2
n
)

C
on

ve
x

(
2 d
,
4 d
,
6 d
,.
..
,1
,−

1
−

2 d
,.
..
,−

2)
0.
93

13
88

7
*

P
ro
b
N
(i
ii
)

1,
00

0
10

,0
00

(I
I.
2)
,
(A

.2
n
)

C
on

ve
x

(
2 d
,
4 d
,
6 d
,.
..
,1
,−

1
−

2 d
,.
..
,−

2)
0.
92

88
08

9
*

P
ro
b
N
(i
v
)

1
0

10
0,
00

0
(I
I.
2)
,
(A

.2
n
)

C
on

ve
x

(
2 d
,
4 d
,
6 d
,.
..
,1
,−

1
−

2 d
,.
..
,−

2)
0.
93

07
82

8
*

P
ro
b
N
(v
)

1
00

10
0,
00

0
(I
I.
2)
,
(A

.2
n
)

C
on

ve
x

(
2 d
,
4 d
,
6 d
,.
..
,1
,−

1
−

2 d
,.
..
,−

2)
0.
93

40
95

0
*

P
ro
b
N
(v
i)

1,
00

0
10

0,
00

0
(I
I.
2)
,
(A

.2
n
)

C
on

ve
x

(
2 d
,
4 d
,
6 d
,.
..
,1
,−

1
−

2 d
,.
..
,−

2)
0.
93

66
59

4
*

P
ro
b
N
(v
ii
)

1,
00

0
1,
00

0,
00

0
(I
I.
2)
,
(A

.2
n
)

C
on

ve
x

(
2 d
,
4 d
,
6 d
,.
..
,1
,−

1
−

2 d
,.
..
,−

2)
0.
93

58
77

6
*

P
ro
b
N
(v
ii
i)

1,
00

0
10

,0
00

,0
00

(I
I.
2)
,
(A

.2
n
)

C
on

ve
x

(
2 d
,
4 d
,
6 d
,.
..
,1
,−

1
−

2 d
,.
..
,−

2)
0.
93

69
50

1
*

P
ro
b
N
(i
x
)

10
,0
00

10
0,
00

0
(I
I.
2)
,
(A

.2
n
)

C
on

ve
x

(
2 d
,
4 d
,
6 d
,.
..
,1
,−

1
−

2 d
,.
..
,−

2)
0.
93

35
26

6
*

T
ab

le
17
.

F
in
it
e
m
in
im

ax
p
ro
b
le
m

in
st
an

ce
s.

A
n
as
te
ri
sk

*
in
d
ic
at
es

th
at

th
e
p
ro
b
le
m

in
st
an

ce
ar
e
cr
ea
te
d
b
y
th
e

au
th
or
s.

131

THIS PAGE INTENTIONALLY LEFT BLANK

132

APPENDIX B. FINITE MINIMAX

ALGORITHM DETAILS AND PARAMETERS

PPP. Pshenichnyi-Pironneau-Polak min-max algorithm (Algorithm 2.4.1 in Polak

1997) use α = 0.5, β = 0.8, and δ = 1. We use the same Armijo parameters α and β

for all algorithms.

ϵ-PPP. ϵ-Active PPP algorithm (Algorithm 2.4.34 in Polak (1997); see also Polak

2008) use the same parameters as above. We implement the most recent version Polak

(2008).

SQP-2QP. Sequential Quadratic Programming with two QPs in each iteration (Al-

gorithm 2.1 of Zhou & Tits 1996) use parameters recommended in Zhou and Tits

(1996) and monotone line search. (We examined the use of nonmonotone line search

in CFSQP, but find it inferior to monotone line search on the set of problem instances.)

SQP-1QP. Sequential Quadratic Programming with one QP in each iteration (Al-

gorithm A in Zhu et al. 2009) use mid-point values stated in Algorithm A, α = 0.25

(not the Armijo parameter), τ = 2.5, and H0 = I. The same settings for α and H0

are used by a co-author in Zhu and Zhang (2005).

SMQN. Smoothing Quasi-Newton algorithm (Algorithm 3.2 in Polak et al. 2008)

use p0 = 1, B(·) = I, and Parameter Adjustment subroutine version “Case (A)” of

Polak et al. (2003).

Algorithm II.2. This algorithm uses the same parameters as SMQN, except for in

the Adaptive Penalty Parameter Adjustment subroutine, where it uses ξ = 2, ς = 2.

Algorithm II.3. This algorithm use parameters t = 10−5, φ = 1, p0 = 1, p̂ =

(log q/t) · 1010, κ = 1030, ξ = 2, γ = t · 10−10, ν = 0.5,∆p = 10.

133

THIS PAGE INTENTIONALLY LEFT BLANK

134

APPENDIX C. SEMI-INFINITE MINIMAX

PROBLEMS

In this appendix, we denote components of x ∈ Rd and y ∈ Y ⊂ Rm by

subscripts, for example, x = (x1, x2, ..., xd). Two problem instances from Rustem and

Howe (2002) are used for the numerical studies in Chapter III. The problem (SMX)

to be solved is as defined by (III.1) and (III.2), with ϕ(x, y) as defined below:

ϕ(x, y) = 5
2∑

i=1

x2i − y2 + x1(−y + 5) + x2(y + 3), (C.1a)

ϕ(x, y) = 5
2∑

i=1

x2i −
2∑

i=1

y2i + x1(−y1 + y2 + 5) + x2(y1 − y2 + 3), (C.1b)

ϕ(x, y) = −(x1 − 1)y1 − (x2 − 2)y2 − (x3 − 1)y3 + 2x21 + 3x22 + x23

−
3∑

i=1

y2i . (C.1c)

The second (SProbB) and third (SProbC) problem instances are Problems 1

and 5 on pp. 100-102 of Rustem and Howe (2002), respectively. SProbB and SProbC

have y-dimensionality of two and three respectively. There are no problem instances

in Rustem and Howe (2002) with y-dimensionality of one. We create SProbA from

SProbB by removing y2 and replacing y1 by y. All three problem instances are convex-

concave, i.e., ϕ(·, y) is convex for any fixed y ∈ Y , and ϕ(x, ·) is concave for any fixed

x ∈ Rd. As ϕ(·, y) is convex for any fixed y, a subgradient is guaranteed to exist,

which is a pre-requisite for the ϵ-subgradient algorithm, Algorithm III.3. As ϕ(x, ·)

is strictly concave for any fixed x, there exists a unique y-maximizer for each fixed x.

Table 18 provides more details on the problem instances. Columns 2 and 3 give

the dimensions of the solution space d and the uncertain parameter m, respectively.

Columns 4 and 5 give the initial points to the solution x0 and the uncertain param-

eter y0, respectively. Note that y0 is only relevant for the ϵ-subgradient algorithm,

Algorithm III.3, as it is not required for the discretization algorithms.

135

For the target solutions (last column), we use Algorithm III.3 (as it shows

significantly faster run times than the discretization algorithms during the preliminary

experiments) with parameters as in Appendix D, we start with a stepsize of α =

0.1 and run the algorithm until the solution remains unchanged for more than ten

iterations, we use this solution to warm-start the next stage where we decrease the

stepsize to α = 0.01 and repeat the process until α = 10−5. We do not use the optimal

solutions as reported in Rustem and Howe (2002) as Rustem and Howe (2002) uses

a different termination criteria. The optimal solutions obtained with our procedure

agree with those reported in Rustem and Howe (2002) at least to the fourth decimal

place.

The other columns are self-explanatory.

136

In
st
an

ce
d

m
ϕ
(x
,y
)

x
0

y 0
B
ou

n
d
s
on

y
T
ar
ge
t
so
lu
ti
on

S
P
ro
b
A

2
1

(C
.1
a)

(1
0,
-1
0)

5
−
5
≤
y
≤

5
(-
0.
49
09
09
09
,
-0
.3
09
09
09
1)

S
P
ro
b
B

2
2

(C
.1
b
)

(1
0,
-1
0)

(5
,
-5
)

−
5
≤
y 1
,y

2
≤

5
(-
0.
48
33
33
32
,
-0
.3
16
66
66
7)

S
P
ro
b
C

3
3

(C
.1
c)

(2
,
2,

2)
(1
,
1,

1)
−
1
≤
y 1
,y

2
,y

3
≤

1
(0
.1
11
11
11
1,

0.
15
38
46
15
,
0.
20
00
00
00
)

T
ab

le
18
.
S
em

i-
in
fi
n
it
e
m
in
im

ax
p
ro
b
le
m

in
st
an

ce
s.

T
h
e
st
ar
ti
n
g
va
lu
e
y 0

is
on

ly
re
le
va
n
t
fo
r
th
e
ϵ-
su
b
gr
ad

ie
n
t
al
go
ri
th
m
,

A
lg
or
it
h
m

II
I.
3.

137

THIS PAGE INTENTIONALLY LEFT BLANK

138

APPENDIX D. SEMI-INFINITE MINIMAX

ALGORITHM DETAILS AND PARAMETERS

Algorithm III.1 (applies to both ϵ-PPP and SQP-2QP). Given a discretization

parameter N ∈ N (|YN |), the discretization scheme discretize each dimension of y into

N1/m equally spaced points, which gives a total of N grid points. For the numerical

studies, N are chosen such that N1/m are integers.

Algorithm III.1 with ϵ-PPP. The ϵ-PPP algorithm is the same algorithm used in

Chapter II. The same Armijo parameters α = 0.5, β = 0.8, and δ = 1 are used. The

ϵ parameter for determining the active set is set at 10−3, which is the value used for

the algorithm comparison in Chapter II.

Algorithm III.1 with SQP-2QP. The SQP-2QP algorithm is the same algorithm

used in Chapter II. Similar to Chapter II, we use the parameters recommended in

Zhou and Tits (1996) and monotone line search. The ϵ parameter for determining the

active set is set at 1, which is the value used for the algorithm comparison in Chapter

II.

Algorithm III.3. Our preliminary numerical tests show very fast run times for

Algorithm III.3 as compared to the other two discretization algorithms. Thus, we

spent minimal effort in sensitivity analyses to fine-tune the algorithm parameters.

We use a constant stepsize α = 0.1, which the preliminary tests show to be robust.

For Step 2 of Algorithm III.3, we use TOMLAB SNOPT with its default tolerances

to find the y-maximizer, and the final y iterate from the previous major iteration is

used to warm-start the search for the y-maximizer in the current major iteration.

139

THIS PAGE INTENTIONALLY LEFT BLANK

140

APPENDIX E. SEMI-INFINITE MIN-MAX-MIN

PROBLEM PARAMETERS AND RESULTS

We generate the data for the defender-attacker-defender (DAD) network using

Table 19, which are used for both (SMXM) and (GMXM). Once the problem data are

generated, see Table 20, we hold them fixed for the analyses. For data ϵ, penbal, and

pencap, which are not data from the problem but are required for the formulation,

we do not randomly generate their values. Instead, we fix their values, ϵ = 0.001,

penbal= 50, and pencap= 50.

Data Random generators

costsupply 5×U(2,4), 5×U(10,13)
costflow U(1,11)
demand 5×U(2,3), 5×U(8,10)
totalsorties U(20,22)
ubsupply U(10,12)
ubflow U(5,15)
vul U(0.5,2)
vulcap 0.6× ubflow

Table 19. Random generators used to produce the DAD problem parameters in Table
20. The phrase 5×U(2,4), 5×U(10,13) represents that a total of ten random numbers
are generated, the first five are uniformly distributed between two and four, and the
last five numbers are uniformly distributed between ten and 13.

We generate 1,000 random attack plans, each attack plan has total sorties over

the 18 arcs no greater than 20.7 sorties. Specifically, we generate 18 random numbers,

each U(0,20.7/4). If the sum of the 18 numbers is no greater than 20.7, we accept the

set as an attack plan. We repeat until we accumulate 1,000 attack plans. The factor

“4” in “20.7/4” is chosen empirically.

An initial point w0 = (0.5×ubsupply , 0.5×ubflow , 0.5×ubflow , ...) is used for

(SMXM). An initial point w0 = (0.5 × ubsupply , 0.5 × ubflow , 0.5 × ubflow , ...0.5 ×

141

ubflow , 0, 0, ..., 0) is used for (GMXM), where the string of 0’s is for EXCESSSUPPLY

and EXTRASUPPLY.

Based on the 1,000 attack plans, the (SMXM) solution obtained from solving

(FMXN) is shown in Table 21, which states (i) the optimal supply distribution plan

before the attack, (ii) the worst-case attack plan, and (iii) the optimal flow after the

worst-case attack. The objective function value for this solution is 1,288.

For (GMXM), the solution is shown in Table 22, with an objective function

value of 891. Note that the objective functions for (SMXM) and (GMXM) are differ-

ent, which explains the significantly different objective function values.

142

N
o
d
e

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

A
rc

(1
,2
)

(1
,3
)

(2
,3
)

(2
,4
)

(3
,2
)

(3
,5
)

(4
,5
)

(4
,6
)

(5
,4
)

(5
,7
)

(6
,7
)

(6
,8
)

(7
,6
)

(7
,9
)

(8
,9
)

(8
,1
0
)

(9
,8
)

(9
,1
0
)

P
a
r
a
m

e
te

r
s

co
st
su

p
p
ly

2
.3

2
.4

2
.5

3
.9

3
.7

1
0
.2

1
2
.8

1
2
.2

1
2
.2

1
0
.2

N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
co
st
fl
o
w

9
.6

1
0
.3

1
0
.8

9
.6

8
.9

6
.1

2
.8

5
.0

2
.3

1
.3

1
0
.4

4
.0

4
.0

4
.3

5
.7

7
.5

1
.3

9
.4

d
em

a
n
d

2
.6

2
.9

2
.4

2
.5

2
.1

8
.2

8
.7

8
.3

8
.9

8
.1

N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
to
ta
ls
o
rt
ie
s

2
0
.7

N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
u
bs
u
p
p
ly

1
2
.0

1
1
.1

1
1
.4

1
2
.0

1
0
.6

3
.8

3
.9

4
.5

4
.6

3
.2

N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
u
bfl

o
w

6
.8

8
.6

5
.6

1
0
.2

8
.4

6
.8

7
.1

1
4
.1

1
1
.8

9
.7

1
4
.1

6
.0

1
2
.5

1
2
.4

1
0
.6

6
.8

1
1
.0

8
.0

vu
l

0
.7

0
.8

1
.8

0
.6

0
.9

0
.6

1
.2

0
.5

1
.9

0
.8

0
.6

1
.0

1
.2

0
.7

2
.0

1
.0

1
.0

0
.6

vu
lc
a
p

4
.1

5
.2

3
.3

6
.1

5
.0

4
.1

4
.3

8
.4

7
.1

5
.8

8
.5

3
.6

7
.5

7
.4

6
.4

4
.1

6
.6

4
.8

T
ab

le
20
.
D
ef
en
d
er
-A

tt
ac
ke
r-
D
ef
en
d
er

N
et
w
or
k
D
at
a.

N
o
d
e

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

A
rc

(1
,2
)

(1
,3
)

(2
,3
)

(2
,4
)

(3
,2
)

(3
,5
)

(4
,5
)

(4
,6
)

(5
,4
)

(5
,7
)

(6
,7
)

(6
,8
)

(7
,6
)

(7
,9
)

(8
,9
)

(8
,1
0
)

(9
,8
)

(9
,1
0
)

P
a
r
a
m

e
te

r
s

S
U
P
P
L
Y

2
.5

4
.8

3
.3

8
.6

6
.7

3
.8

3
.9

4
.5

4
.6

3
.2

N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
S
O
R
T
IE

0
.7

0
.4

1
.8

0
.1

0
.3

0
.4

0
.6

4
.3

1
.0

4
.6

1
.1

0
.7

1
.3

0
.2

0
.4

1
.9

0
.0

0
.4

F
L
O
W

0
.0

0
.0

0
.0

2
.0

0
.0

0
.9

0
.0

8
.1

0
.0

5
.6

2
.6

2
.8

0
.0

5
.2

0
.0

1
.5

0
.8

1
.7

T
ab

le
21
.
R
es
u
lt
s
fo
r
(S
M
X
M
).

N
o
d
e

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

A
rc

(1
,2
)

(1
,3
)

(2
,3
)

(2
,4
)

(3
,2
)

(3
,5
)

(4
,5
)

(4
,6
)

(5
,4
)

(5
,7
)

(6
,7
)

(6
,8
)

(7
,6
)

(7
,9
)

(8
,9
)

(8
,1
0
)

(9
,8
)

(9
,1
0
)

P
a
r
a
m

e
te

r
s

S
U
P
P
L
Y

2
.6

4
.8

3
.3

7
.1

5
.1

3
.8

3
.9

4
.5

4
.6

3
.2

N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
N
.A

.
S
O
R
T
IE

0
.7

0
.9

1
.9

0
.3

0
.2

1
.7

4
.6

0
.3

1
.1

0
.4

1
.8

0
.1

0
.6

0
.8

0
.5

0
.7

0
.4

1
.1

F
L
O
W

0
.0

0
.0

0
.0

2
.0

0
.0

0
.9

1
.8

4
.8

0
.0

5
.8

0
.0

0
.4

0
.0

2
.7

0
.4

0
.0

0
.0

0
.0

T
ab

le
22
.
R
es
u
lt
s
fo
r
(G

M
X
M
).

143

THIS PAGE INTENTIONALLY LEFT BLANK

144

LIST OF REFERENCES

Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network flows: Theory, algorithms, and
applications. Englewood Cliffs, NJ: Prentice-Hall.

Ariyawansa, K. A., & Jiang, P. L. (2000). On complexity of the translational-cut algo-
rithm for convex minimax problems. J. Optimization Theory and Applications,
107, 223–243.

Becker, R. G., Dwolatzky, B., Karakitsos, E., & Rustem, B. (1986). The simultaneous
use of rival models in policy optimisation. The Economic Journal, 96, 425–448.

Bertsekas, D. P. (1999). Nonlinear programming. Belmont, MA: Athena Scientific.

Bertsekas, D. P. (2010). Convex optimization theory. Supplementary Chapter 6 on
convex optimization algorithms. Nashua, NH: Athena Scientific, May 5, 2010
edition.

Bertsekas, D. P., Nedic, A., & Ozdaglar, A. E. (2003). Convex analysis and optimiza-
tion. Athena Scientific Optimization and Computation Series. Belmont, MA:
Athena Scientific.

Brualdi, R. A. (2004). Introductory combinatorics. Upper Saddle River, NJ: Prentice-
Hall.

Cai, X., Teo, K., Yang, X., & Zhou, X. (2000). Portfolio optimization under a minimax
rule. Management Science, 46, 957–972.

Capps, L. R. (1970). A dynamic model for the allocation of airstrikes against a
lines-of-communication network. Master’s thesis, Naval Postgraduate School,
Monterey, CA.

Cardinal, J., & Langerman, S. (2006). Min-max-min geometric facility location
problems. In Proc. of the European workshop on computational geometry
(EWCG06), pp. 149–152. Delphi.

Chaney, R. W. (1982). A method of centers algorithm for certain minimax problems.
Mathematical Programming, 22, 202–226.

Chen, T., & Fan, M. K. H. (1998). On convex formulation of the floorplan area
minimization problem. In ISPD ’98: Proceedings of the 1998 international
symposium on physical design, pp. 124–128. New York, NY: ACM.

Demyanov, V. F., & Malozemov, V. N. (1971). On the theory of non-linear min-max
problems. Russian Mathematical Surveys, 26, 57–115.

145

Demyanov, V. F., & Malozemov, V. N. (1974). Introduction to minimax. New York,
NY: Wiley.

Drezner, Z. (1987). On the complexity of the exchange algorithm for minimax opti-
mization problems. Mathematical Programming, 38, 219–222.

Gill, P. E., Hammarling, S. J., Murray, W., Saunders, M. A., & Wright, M. H.
(1986). User’s guide for LSSOL version 1.0: a Fortran package for constrained
linear least-squares and convex quadratic programming. Stanford, CA: Systems
Optimization Laboratory - University of Stanford.

Gill, P. E., Murray, W., & Saunders, M. A. (2007). User’s guide for SNOPT version
7: Software for large-scale nonlinear programming. Stanford, CA: Systems
Optimization Laboratory - University of Stanford.

Gill, P. E., Murray, W., & Wright, M. H. (1991). Numerical linear algebra and
optimization. Redwood, CA: Addison-Wesley.

Hettich, R. (1986). An implementation of a discretization method for semi-infinite
programming. Mathematical Programming, 34, 354–361.

Kirjner-Neto, C., & Polak, E. (1998). On the conversion of optimization problems
with max-min constraints to standard optimization problems. SIAM J. Opti-
mization, 8, 887–915.

Kiwiel, K. C. (1987). A direct method of linearization for continuous minimax prob-
lems. J. Optimization Theory and Applications, 55, 271–287.

Klessig, R., & Polak, E. (1973). A method of feasible directions using function approx-
imations, with applications to min max problems. J. Mathematical Analysis
and Applications, 41, 583–602.

Kort, B. W., & Bertsekas, D. P. (1972). A new penalty function algorithm for con-
strained minimization. Proceedings 1972 IEEE Conf. Decision and Control,
pp. 343–362.

Kortanek, K. O., & No, H. (1993). A central cutting plane algorithm for convex
semi-infinite programming problems. SIAM J. Optimization, 3, 901–918.

Lang, B. (2000). Direct solvers for symmetric eigenvalue problems. InModern methods
and algorithms of quantum chemistry, NIC series, vol. 3, edited by Groten-
dorst, J. Julich, Germany.

Lawrence, C., Zhou, J. L., & Tits, A. L. (1997). User’s guide for CFSQP version 2.5: A
C code for solving (large scale) constrained nonlinear (minimax) optimization
problems, generating iterates satisfying all inequality constraints. Technical
report.

146

Lee, S.-H., & Glynn, P. W. (2003). Computing the distribution function of a condi-
tional expectation via Monte Carlo: Discrete conditioning spaces. ACM Trans.
Model. Comput. Simul., 13, 238–258.

Li, X. (1992). An entropy-based aggregate method for minimax optimization. Engi-
neering Optimization, 18, 277–285.

Li, X. S., & Fang, S. C. (1997). On the entropic regularization method for solving
min-max problems with applications. Mathematical Methods of Operations
Research, 46, 119–130.

Luksan, L., Matonoha, C., & Vlcek, J. (2005). Primal interior-point method for large
sparse minimax optimization. Technical Report 941, Institute of Computer
Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic.

Martin, P. A. S. (2007). Tri-level optimization models to defend critical infrastructure.
Master’s thesis, Naval Postgraduate School, Monterey, CA.

Mathworks (2009). MATLAB 7 getting started guide. Natick, MA: The MathWorks,
Inc.

Monteiro, R. D. C., & Adler, I. (1989). Interior path following primal-dual algorithms.
Part II: Convex quadratic programming. Mathematical Programming, 44, 43–
66.

Nemirovski, A. S., & Yudin, D. B. (1983). Problem complexity and method efficiency
in optimization. New York: John Wiley.

Nesterov, Y. (1995). Complexity estimates of some cutting plane methods based on
the analytic barrier. Mathematical Programming, 69, 149–176.

Nesterov, Y. (2004). Introductory lectures on convex optimization: A basic course
(applied optimization). Norwell, MA: Kluwer Academic Publishers.

Nesterov, Y., & Vial, J. P. (2004). Augmented self-concordant barriers and nonlinear
optimization problems with finite complexity. Mathematical Programming, 99,
149–174.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Heidelberg: Springer.

Nugent, R. O. (1969). The optimum allocation of airstrikes against a transportation
network for an exponential damage function. Master’s thesis, Naval Postgrad-
uate School, Monterey, CA.

Obasanjo, E., Tzallas-Regas, G., & Rustem, B. (2010). An interior-point algorithm
for nonlinear minimax problems. J. Optimization Theory and Applications,
144, 291–318.

147

Panier, E. R., & Tits, A. L. (1989). A globally convergent algorithm with adap-
tively refined discretization for semi-infinite optimization problems arising in
engineering design. IEEE Transactions on Automatic Control, 34, 903–908.

Panin, V. M. (1981). Linearization method for continuous min-max problems. Kiber-
netika, 2, 75–78.

Pasupathy, R. (2010). On choosing parameters in retrospective-approximation algo-
rithms for stochastic root finding and simulation optimization. Oper. Res., 58,
889–901.

Pee, E. Y., & Royset, J. O. (2010). On solving large-scale finite minimax problems
using exponential smoothing. To be published in J. Optimization Theory and
Applications, available online DOI: 10.1007/s10957-010-9759-1.

Polak, E. (1987). On the mathematical foundations of nondifferentiable optimization
in engineering design. SIAM Review, 29, 21–89.

Polak, E. (1997). Optimization. algorithms and consistent approximations. New York,
NY: Springer.

Polak, E. (2003). Smoothing techniques for the solution of finite and semi-infinite min-
max-min problems. In High performance algorithms and software for nonlinear
optimization, edited by Pillo, G. D., & Murli, A. Dordrecht, Netherlands:
Kluwer Academic Publishers.

Polak, E. (2008). On the convergence of the Pshenichnyi-Pironneau-Polak minimax
algorithm with an active-set strategy. J. Optimization Theory and Applica-
tions, 138, 305–309.

Polak, E., & He, L. (1992). Rate-preserving discretization strategies for semi-infinite
programming and optimal control. SIAM J. Control and Optimization, 30,
548–572.

Polak, E., Mayne, D. Q., & Higgins, J. (1992). On the extension of Newton’s method
to semi-infinite minimax problems. SIAM J. Control and Optimization, 30,
376–389.

Polak, E., Royset, J. O., & Womersley, R. S. (2003). Algorithms with adaptive
smoothing for finite minimax problems. J. Optimization Theory and Applica-
tions, 119, 459–484.

Polak, E., Salcudean, S., & Mayne, D. Q. (1987). Adaptive control of ARMA plants
using worst case design by semi-infinite optimization. IEEE Transactions on
Automatic Control, 32, 388–397.

148

Polak, E., Womersley, R. S., & Yin, H. X. (2008). An algorithm based on active sets
and smoothing for discretized semi-infinite minimax problems. J. Optimization
Theory and Applications, 138, 311–328.

Powell, W. (2007). Approximate dynamic programming: Solving the curses of dimen-
sionality. New York: Wiley.

Price, C. J., & Coope, I. D. (1990). An exact penalty function algorithm for semi-
infinite programmes. BIT Numerical Mathematics, 30, 723–734.

Ralph, D., & Polak, E. (2000). A first-order algorithm for semi-infinite min-max-
min problems. Manuscript, Judge Institute of Management, University of
Cambridge, Cambridge, U.K.

Reemtsen, R. (1991). Discretization methods for the solution of semi-infinite pro-
gramming problems. J. Optimization Theory and Applications, 71, 85–103.

Rockafellar, R. T. (2007). Coherent approaches to risk in optimization under uncer-
tainty. Tutorials in Oper. Res., 34, 38–61.

Rockafellar, R. T., & Wets, R. J. B. (1998). Variational analysis. Heidelberg:
Springer.

Rustem, B., & Howe, M. (2002). Algorithms for worst-case design and applications
to risk management. Princeton, NJ: Princeton University Press.

Sahinidis, N. V. (2004). Optimization under uncertainty: State-of-the-art and oppor-
tunities. Computers and Chemical Engineering, 28, 971–983. FOCAPO 2003
Special issue.

Shapiro, A. (2009). Semi-infinite programming, duality, discretization and optimal-
ity conditions. Optimization: A Journal of Mathematical Programming and
Operations Research, 58, 133–161.

Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic pro-
gramming: Modeling and theory. Philadelphia, PA: SIAM.

Still, G. (2001). Discretization in semi-infinite programming: the rate of convergence.
Mathematical Programming, 91, 53–69.

Sturm, J. F., & Zhang, S. (1995). A dual and interior-point approach to solve convex
min-max problems. In Minimax and applications, edited by Du, D. Z., &
Pardalos, P. M., pp. 69–78. Kluwer Academic Publishers.

Tits, A. L. (1985). On the optimal design centering, tolerancing, and tuning problem.
J. Optimization Theory and Applications, 45, 487–494.

149

Tomlab (2009). User’s guide for TOMLAB/CPLEX v12.1. Pullman, WA: Tomlab
Optimization Inc.

Urruty, H., & Baptiste, J. (1996). Convex analysis and minimization algorithms 1.
Fundamentals. Berlin: Springer.

Wiest, E. J., & Polak, E. (1991). On the rate of convergence of two minimax algo-
rithms. J. Optimization Theory and Applications, 71, 1–30.

Xu, S. (2001). Smoothing method for minimax problems. Computational Optimiza-
tion and Applications, 20, 267–279.

Ye, F., Liu, H., Zhou, S., & Liu, S. (2008). A smoothing trust-region Newton-CG
method for minimax problem. Applied Mathematics and Computation, 199,
581–589.

Zhou, J. L., & Tits, A. L. (1996). An SQP algorithm for finely discretized contin-
uous minimax problems and other minimax problems with many objective
functions. SIAM J. Optimization, 6, 461–487.

Zhu, Z., Cai, X., & Jian, J. (2009). An improved SQP algorithm for solving minimax
problems. Applied Mathematics Letters, 22, 464–469.

Zhu, Z., & Zhang, K. (2005). A superlinearly convergent sequential quadratic pro-
gramming algorithm for minimax problems. Chinese J. Numerical Mathemat-
ics and Applications, 27, 15–32.

150

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Assistant Professor Johannes O. Royset
Department of Operations Research
Naval Postgraduate School
Monterey, California

4. Distinguished Professor Gerald G. Brown
Department of Operations Research
Naval Postgraduate School
Monterey, California

5. Distinguished Professor R. Kevin Wood
Department of Operations Research
Naval Postgraduate School
Monterey, California

6. Associate Professor W. Matthew Carlyle
Department of Operations Research
Naval Postgraduate School
Monterey, California

7. Associate Professor Craig W. Rasmussen
Department of Applied Mathematics
Naval Postgraduate School
Monterey, California

151

8. Professor Wei Kang
Department of Applied Mathematics
Naval Postgraduate School
Monterey, California

152

